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A P P L I E D  E C O L O G Y

Improvements in reports of species redistribution 
under climate change are required
Shirin Taheri1,2*, Babak Naimi3, Carsten Rahbek4,5,6, Miguel B. Araújo1,7*

Studies have documented climate change–induced shifts in species distributions but uncertainties associated 
with data and methods are typically unexplored. We reviewed 240 reports of climate-related species-range 
shifts and classified them based on three criteria. We ask whether observed distributional shifts are compared 
against random expectations, whether multicausal factors are examined on equal footing, and whether studies 
provide sufficient documentation to enable replication. We found that only ~12.1% of studies compare distribu-
tional shifts across multiple directions, ~1.6% distinguish observed patterns from random expectations, and ~19.66% 
examine multicausal factors. Last, ~75.5% of studies report sufficient data and results to allow replication. We 
show that despite gradual improvements over time, there is scope for raising standards in data and methods 
within reports of climate-change induced shifts in species distribution. Accurate reporting is important because 
policy responses depend on them. Flawed assessments can fuel criticism and divert scarce resources for biodiversity 
to competing priorities.

INTRODUCTION
As climate changes, so do species distributions. Evidence is mount-
ing that ongoing climate changes are causing species to redistribute 
globally (1, 2). The magnitude of distributional shifts is now esti-
mated to be 2.5 times greater than originally thought (3). While many 
studies have uncovered the existence of nonrandom latitudinal or 
altitudinal shifts in species distributions (3–5), consistent with the 
hypothesis that climate change is driving them, others found that 
shifts can lag behind climate change owing to physiological plasticity, 
microclimate buffering, and delayed responses (6–8). These lags can 
lead to nondetection of ongoing distributional changes and failures 
to detect the mechanisms underpinning them. Observational studies 
have also detected species redistributions not following clear climatic 
gradients (9–11). These seemingly idiosyncratic responses to climate 
change could be related to complex interactions among tempera-
ture, precipitation (12), land-use change (13), species climatic toler-
ances (14), and biotic interactions (15). Complex nonlinear species 
responses to climate change can also limit the ability to detect dis-
tributional changes. This is particularly true with approaches assum-
ing simple, often linear, relationships between temperature and 
species distributions (10). Measuring range dynamics along spatial 
gradients, such as latitude or altitude, can also mask complex bio-
logical responses to climate change because these gradients are not 
precise surrogates for temperature gradients, let alone for multiple 
climate dimensions (16, 17).

Unlike the literature involving modeling of future climate change 
effects on species distributions, where several studies have examined 

uncertainties and addressed questions related to the minimum 
standards that should be required to make statements about mod-
eled patterns (18, 19), there is an unexpected lack of analyses evalu-
ating the quality of observational inferences regarding climate change 
effects on past species distributions. As a first step toward weighting 
the strength of the observational evidence provided by these stud-
ies, we review the literature involving the analysis of multiple spe-
cies responses to climate change (see Materials and Methods; fig. S1) 
in light of three important criteria: (i) pattern detection, which is the 
ability to discern signal from noise in patterns of species distribu-
tional shifts; (ii) causality, which is the ability to attribute climate 
change as the most plausible driver of observed distributional shifts 
given alternative mechanisms; and (iii) reproducibility, which is the 
ability to replicate studies given the information provided.

Each one of these criteria is assessed by a simple “yes” or “no” 
answer to six questions linked with the three criteria (Table 1). 
Stronger support to the conclusions in the reviewed studies is ex-
pected for those comparing distributional changes across multiple 
geographical directions, investigating multiple alternative causal 
mechanisms potentially driving distributional changes, and de-
scribing results with enough detail to enable replication and re-
analysis.

RESULTS
Using extensive search of the literature (see Materials and Methods), 
we identified 240 studies examining the effects of climate change on 
the distributions of multiple species. Existing research is strongly 
biased toward the Northern Hemisphere (78.9%) and terrestrial 
ecosystems (80.4%) (Fig. 1A). Specifically, studies predominate 
in North America and Europe, mainly western Europe and within 
the United Kingdom, with notable knowledge gaps emerging in 
South America, Africa, Asia, and the Middle East [see also (20)]. We 
also found that evidence of climate change effects on species distri-
bution has been examined for ≤2% of reptiles, insects, plants, algae, 
crustacean, and mollusca; 2.9% of mammals; 2.3% of fishes; and 
23.47% of bird species (Fig. 1B).

When examining how the different studies characterize the direc-
tion of species distributional shifts, we found that only ~12.1% (n = 29) 
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compare shifts simultaneously across all possible geographical di-
rections (21–23). That is, they generally investigate the species range 
changes across the expected direction of climate change (typically 
temperature change) while ignoring comparison with distribu-
tional changes across alternative directions (Fig. 2, A and B). Of the 
29 studies that examine distributional changes across multiple 
directions, just four tested whether observed distribution shifts 
could have arisen by chance by comparison with a suitable null 
model (8, 24–26). Analyses of species distributional shifts across 
multiple directions were mostly conducted with animals (n = 25). 
Plants feature in just four assessments (27–30). Unlike studies ad-
dressing distributional changes in a single dimension (e.g., latitude 
or altitude), studies examining range shifts in multiple directions 
typically found shifts to be idiosyncratic while being difficult to as-
cribe a clear direction of change [e.g., (12, 31, 32)].

When investigating links between species distributions and cli-
mate change, ~59% (n = 142) of the studies explicitly examine how 
temperature change covaries with species distributional changes. 
However, most studies disregard other environmental drivers, such 
as precipitation change, land-use change, or the interactions among 
them. Of the reviewed studies investigating the causes of distribu-
tion shifts other than temperature change (36.4%; n = 87), only 
19.66% (n = 47) have tested alternative causal factors on equal foot-
ing (Fig. 2A). Complex interactions among temperature and pre-
cipitation change, and species-specific tolerances intervening on 
species responses to climate changes, were examined in a few studies 
so far [e.g., (10, 33)].

When examining the reproducibility of studies, we found that 
~25.5% (n = 59) did not report data at the individual species level; a 
requirement for full reanalysis and replication of the studies (Fig. 2A).

The degree to which studies met our criteria also varied among 
regions: Australia, northern Europe, and a few studies in North America 
were generally more proficient (Fig. 2, B and C). For example, 
among 40 papers that received a score of 4 in our criteria scoring, 
42.5% (n = 17) are in Europe and 37.5% (n = 15) are in North America. 

In total, only 6 studies of 240 received a score of 5, in which two of 
them are in Europe, three of them in North America, and one in 
Africa. Great Britain, although with the highest number of species 
distributional change studies (n = 37), had an average (median) of 
just two subcriteria met. China with three studies reviewed averaged 
three subcriteria met (34–36), all reporting heterogeneous and di-
verse responses of species to climate change (Fig. 2, B and C).

Overall, studies performed poorly against the three criteria (six 
subcriteria) used (see Table 1). Of the 240 papers reviewed, only 11 
(4.5%) met the three criteria, i.e., detected changes in all possible 
directions, considered at least one other causal factors rather than 
temperature, and presented the results for individual species meet-
ing all the three main criteria (Fig. 3). Just 16.6% (n = 40) met four 
subcriteria, and only 2.5% (n = 6) met five subcriteria [e.g., (23, 34)]. 
In general, studies conducted for terrestrial ecosystems achieved 
greater performance according to the subcriteria used (Fig. 2B), al-
though the sample size of studies in terrestrial ecosystems (n = 193; 
80.4%) is much larger than in marine ones (n = 47).

We analyzed how the different aspects reflecting the quality of 
studies evolved through time given the criteria. We found that the 
studies’ performances had a tendency to increase across all criteria 
(Fig. 4). For example, among studies that measured multidirection-
ality of range shifts (n = 29), 26 were published from 2011 onward. 
Likewise, in this period, 60 of 87 studies investigated multiple caus-
al factors, while 116 of 181 met our criteria for reproducibility.

DISCUSSION
Species adapt to changes in climate by moving to more suitable loca-
tions (37). Alternatively, some species might be able to persist through-
out their known distributions because of phenotypic plasticity or 
adaptive genetic modification (38, 39). When neither of these op-
tions are available, species perish (40). The combined adaptive re-
sponses of species to climate change leads to changes in species ranges. 
Detecting changes using fragmented samples of data and identify-
ing potential causes for those changes is particularly challenging.

There are considerable uncertainties regarding the speed of dis-
tributional shifts (41–43), particularly along rear (contracting) edges 
(44, 45), the accelerating or mitigating effects of biotic interactions 
(46, 47), the capacity to adapt in situ associated with expressions of 
phenotypic plasticity (38, 39) or genetic modification (48), and the 
effects of interactions among multiple climate drivers of change (49). 
The tolerances of species to climate extremes are generally inferred 
with statistical approaches (50–52). However, circumstantial evidence 
suggests that inferred tolerances are narrower than real ones (15, 53). 
Combined, these biological and environmental effects can truncate 
the pace and direction of biological responses to climate change. 
Delayed responses are common (54), resilience to changes (55) has 
been observed, and the unknown consequences of novel climates 
are hard to anticipate (56).

In addition, current estimates of climate change effects on spe-
cies distributions are severely hampered by geographic and taxonomic 
biases in the underlying data [Fig. 1; see also (20)]. Most data come 
from species-poor, mostly temperate, regions. In sharp contrast, the 
tropics hosting the vast majority the planet’s biological diversity 
(57) scarcely have any study assessing climate change effects on spe-
cies. A range of factors affects the availability of biodiversity-related 
information. The knowledge gap in tropics, for example, is related 
to insufficient funding, inadequate infrastructure, and scarce local 

Table 1. Checklist used to measure the strength of evidence about 
species distributional shifts and their link with climate.  

Evaluation criteria

Question of interest: Are distributional changes different from that 
expected in the absence of major external drivers, that is, by chance?

I. Pattern detection
a. Are range changes analyzed simultaneously across all possible 

directions of change? Yes = 1, No = 0
b. If so, are the obtained results compared against a null model 

expectation enabling distinguishing the observed patterns from 
chance expectation? Yes = 1, No = 0

Question of interest: Are potential causal factors rather than 
temperature examined in equal footing?

II. Attribution
a. Are explanatory causes of range changes investigated? Yes = 1, No = 0
b. If so, are alternative causal explanations compared on equal footing? 

Yes = 1, No = 0

Question of interest: Are distributional changes described with 
sufficient details to enable replication and reanalysis of the results?

III. Reproducibility
a. Are results presented for each individual species? Yes = 1, No = 0
b. If not, is variation among range dynamics of different sets of species 

described? Yes = 1, No = 0
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expertise for data collection and identification, inaccessibility to re-
search sites because of the political upheaval, and difficulties in getting 
data published or public (58). In addition, geopolitics (59), regional 
democracy (60), socioeconomic, history, culture, scientific interest 
(61), and unwillingness of sharing the data play an important role in 
biodiversity data collections and publishing bias.

While the impact of climate change on the future of biodiversity 
has been assessed for a wide range of taxonomic groups, the total 
number of empirical studies remains relatively low. One important 
reason for this is the lack of replicable historical surveys [but see (62)] 
that limit the reliability of the assessed empirical relationships be-
tween species distributional changes and environmental changes (63).

Fig. 1. Geographic and taxonomic coverage of climate related range shifts studies. (A) Geographical coverage across terrestrial and marine realms with 82% of the 
studies being in the Northern Hemisphere while 80.4% covering terrestrial ecosystems. (B) Taxonomic coverage with ≤2% including studies with amphibians, insects, 
reptiles, algae, crustaceans, and mollusca; 2.3% including fish; 2.9% mammals; and 23.47% birds.
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Studied clades also represent an extremely small fraction of the 
world’s life forms: insects, by far the most specious group in the 
world, are almost not covered by assessments, and most studies are 
based on trees and vertebrates with 23% conducted on birds alone. 
Any conclusion drawn from existing data is thereby regional, taxo-
nomically biased, and hardly transferable globally. Possible general-
izations are, therefore, limited.

Adding to the limitations of the data, we found that most studies 
underperform on the methodological standards of analysis. These 
are, however, more easily circumvented than the limitations of data. 
To ascertain whether a distributional shift occurs in response to a 
given environmental driver, one needs to assess changes not only 
along the expected gradient but also along alternative gradients (22). 
That is, if species are expected to change along a south to north 
gradient, for example, then one needs to measure whether the changes 
along latitude are significantly different from the changes along 
longitude. If not, then it will be difficult to ascertain that changes are 
not a consequence of natural population dynamics of range expan-
sion and contraction (64). Even when distributional changes are 
examined across multiple directions, one might still ask if observed 
patterns could not have arisen by chance given geometrical constrains 
for dispersal or alternative environmental driver dynamics (26). 
Addressing these questions requires the use of null models of distri-
butional change, but although null models have made their way into 
ecology (65, 66) and biogeography (67), they are still hard to find in 
studies of climate change effects on biodiversity.

That correlation does not imply that causation is well known. 
Nevertheless, when a good mechanistic hypothesis exists linking a 
pattern and the potential underlying mechanisms, and when expected 
relationships are observed repeatedly across different regions and 
times, accumulation of evidence can be interpreted as supporting 
hypothesized causal links between pattern and mechanism (18). This 
is the logic linking elevation and latitudinal shifts with climate change: 
As temperature increases, higher latitudes and elevations are ex-
pected to warm, hence receiving more warm tolerant species while 
losing cold tolerant ones. Such is an observation dating as far as the 
classic observations of A. von Humboldt in the Chimborazo Moun-
tain of Ecuador (62, 68). However, climatic gradients do not always 
follow geographical gradients linearly (12), and most often there are 

Fig. 2. The quality assessment in climate-related range shifts reports. (A) The 
proportion of reports for six subcriteria. The plot shows the proportion of each 
study met each criterion (C.1 and C.2, pattern detection; C.3 and C.4, attribution; 
and C.5 and C.6, reproducibility). (B) Assessed quality of the reports of species re-
distribution under climate change across marine and terrestrial ecosystems. Shows 
the geographical distribution of studies investigating climate change effects on 
species distributions ranked by the overall (median) benchmark score achieved 
through summation of individual ranks in the three evaluation criteria. Values in 
the map range from 1 (only one of the evaluation subcriteria met) to 4 (four of the 
evaluation subcriteria met). Higher scores are colored green and lower scores are 
colored violet. (C) Sum of the evaluation subcriteria in each continent. Shows the 
number of evaluation subcriteria met by each study across continents.

Fig. 3. Cross-examination of the subcriteria used to evaluate reports of species 
redistribution under climate change. Shows the multiple overlapping among 
the three main criteria. Each circle corresponds to one of the main evaluation crite-
ria. The size of the circles represents the number of reports met each main criterion 
(pattern detection, causality, and reproducibility). The Reuleaux triangle in the cen-
ter shows the intersection between three circles, and it means only 4.5% (n = 11) of 
the studies met these three main criteria.
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feedbacks between temperature and other climatic variables (e.g., 
humidity and wind) that further affect the expected relationship 
between temperature and geographic gradients (69). Seeking to at-
tribute climate change to a given distributional shift is thus better 
achieved by relating species range changes with climate variables 
instead of geographical proxies, such as latitude and elevation. This 
point has been made several times for studies examining diversity 
gradients along elevation gradients (70) and latitude (17), but as our 
review shows, it has not been fully appreciated and integrated in 
assessments of climate change effects on biodiversity.

In addition, even when climate change variables are used, in-
stead of geographical proxies, to examine relationships with species 
distributional shifts, there are occasions when distributional shifts 
respond not only to climate but also to other environmental changes, 
such as spread of disease (71) or land-use change (49, 72, 73). At-
tributing a mechanism to an observed pattern thus benefits from 
examination of multiple alternative hypotheses on equal footing. 
Nevertheless, multimodal inference (74) was found to be extremely 
rare in the reviewed literature.

Last, a critical feature of science-based assessments is the ability 
to reproduce and build upon each other’s published results. Unfor-
tunately, many findings cannot be reproduced. Our review reveals 
that ~25% of the reports on distributional changes under climate 
change do not provide full access to the data and detailed results. 
Reproducibility contains several elements such as selective report-
ing, methods and availability of codes, statistical power, experimen-
tal design, and availability of raw data. In this review, we focused on 
selective reporting. However, we notice that considering other fac-
tors of reproducibility could markedly affect our assessment of pub-
lished studies. Recently, a study (75) carried out by 1500 scientists 
from different disciplines (e.g., chemistry, physics, medicine, and 
biology) showed that most of the scientific articles are not fully re-
producible; our review corroborates their findings in the subfield of 
climate change ecology and biogeography.

Moving forward in the capacity to assess the where, when, and 
why of climate change effects on biodiversity is crucial to guide the 
timing and magnitude of human adaptation strategies for biodi-
versity. In our scan of the literature, we asked very simple questions 

that enable establishing inferences about the quality of the under-
lying data and methods. We demonstrate that substantial improve-
ments should be considered in assessments. Most of them do not 
require reinventing concepts or methods. Questions about the need 
for null models to discriminate expected directional patterns from 
stochastic (or more complex) ones (65, 76), or the disadvantages of 
using indirect proxies as opposed to direct variables with proven 
mechanistic links to the patterns (17, 70), are well established in the 
ecological literature. Somehow, these debates and the associated 
recommendations have not percolated through studies examining 
climate change effects on species distributions.

Our study provides a hint of the best-practice standards needed 
for assessments of climate change effects on a specific facet of biodi-
versity change: species range change. Other biodiversity change facets, 
such as local patterns of colonization and extinction, or abundance 
changes, or changes in community composition are not covered by 
our analysis, partly because very few of these studies exist across 
multiple species. Future investigations should seek to expand the 
facets of biodiversity change considered in quality assessments and 
strive to build consensus on the standards required to increase the 
strength of evidence of climate change impacts on biodiversity 
while developing detailed guidelines to help increase the robust-
ness, transparency, and reproducibility of the assessments.

MATERIALS AND METHODS
Literature review
We identified papers by screening published reviews (20) and meta- 
analyses (1, 2) and by searching the primary literature using engines 
such as Google Scholar, ISI Web of Science, Scopus, and Wiley Online 
Library. We used a combination of the following keywords in our 
search: “climate change” or “climate warming,” “range” or “distri-
bution,” and “poleward/northward shift” or “upslope/altitudinal shift” 
or expansion/contraction (fig. S1). We then filtered the records by 
using some inclusion and exclusion criteria. These criteria comprised 
references that assessed distributional changes based on species oc-
currence data over at least two historical periods. Since our focus 
was on the empirically observed distributional shifts, we excluded 
papers that used abundance or richness data alone or those that used 
modeling and/or predictions to quantify “future” or “potential” 
changes. Our search criteria provided a set of 240 publications.

Data mining
Following the literature search, we extracted the relevant data to be 
structured in a suitable database (table S1). For each publication, we 
recorded the following information: (i) study year, (ii) spatial scale 
(e.g., local, regional, and continental), (iii) geographic region as re-
ported in the study, (iv) ecosystem type (terrestrial versus marine), 
(v) climate zone, (vi) magnitude and direction of distributional 
shifts, (iv) total number of taxa and their identity (taxonomic group 
and species names), (vi) time period, and (vii and viii) the general 
methodology used by the study (table S1).

In the database, a unique code was assigned to each article re-
viewed and its geographic location was also recorded. To effectively 
visualize the spatial coverage of the reports, we digitized the geo-
graphical boundaries of all the studies reviewed as a set of either 
spatial polygons or points depending on the geographical extent of 
the study. We then used a regular 2-degree (2 × 69 miles) grid 
cells covering the world’s land and sea areas in ArcMap software 

Fig. 4. Distribution of studies by evaluation subcriteria over time. Shows a 
general trend of improvement of reports of climate-related range shifts over time 
across the six subcriteria. Higher values in the y axis mean that more of the estab-
lished evaluation criteria were met.
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(version 10.1) to aggregate the digitized points and polygons into 
the grid cells and quantify the frequency of the studies at each cell.

We used the Köppen climate classification (77) to group the 
studies into the climate zones. In addition, we aggregated the spatial 
boundaries of the studies within the five major climatic zones de-
fined by the Köppen climate classification based on seasonal tem-
perature and precipitation patterns. The five climatic zones are 
(i) tropical, (ii) dry, (iii) temperate, (iv) continental/cold, and (v) polar.

To sort the taxonomic coverage of the data used in the studies, 
we first extracted the number of species and their scientific names 
for the given taxonomic group in each article (table S3). We added 
the names of species to the database, and after removing duplicate 
records, we calculated the proportion of species considered in stud-
ies (fig. S1).

Assessment criteria
The assessment of published studies was made following a simple 
set of criteria as described in Table 1. For pattern detection, we fo-
cused on the methodological aspects of the studies. We explored 
how the species distributional shifts were measured. Specifically, we 
asked whether distribution shifts were analyzed across all potential 
directions (e.g., latitude, longitude, and elevation), and whether the 
null expectation regarding distributional changes (likelihood of 
changes derived from patterns shifted by chance because of internal 
variability) was determined. Therefore, scientific publications that 
assessed distributional shifts within all the possible directions, rather 
than only along a single elevation or latitudinal axis, and also com-
pared the results against the patterns expected by chance (null dis-
tribution) received the maximum score for the pattern detection 
group benchmark.

For attribution, we asked whether studies examined potential 
causal links between observed distributional changes and environ-
mental predictors (e.g., climate, precipitation, and land use). We 
carefully reviewed the studies’ methods sections to assess how (if at 
all) they attributed observed shifts in species distributions to climate 
change and what approaches were used to perform the task. The 
papers that investigated multiple alternative causal factors on equal 
footing, rather than simply examining patterns against a single pre-
dictor (e.g., temperature), received maximum score for the attribu-
tion criteria.

For reproducibility, we examined the results sections of the stud-
ies. A study received the full score for this group if the results were 
available for each individual species analyzed and if the divergence 
responses among species were fairly reported.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/15/eabe1110/DC1
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