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ABSTRACT

 

Aim

 

There is a debate as to whether biotic interactions exert a dominant role in

governing species distributions at macroecological scales. The prevailing idea is that

climate is the key limiting factor; thus models that use present-day climate–species

range relationships are expected to provide reasonable means to quantify the

impacts of climate change on species distributions. However, there is little empirical

evidence that biotic interactions would not constrain species distributions at

macroecological scales. We examine this idea, for the first time, and provide tests for

two null hypotheses: (

 

H

 

0

 

 

 

1) – biotic interactions do not exert a significant role in

explaining current distributions of a particular species of butterfly (clouded Apollo,

 

Parnassius mnemosyne

 

) in Europe; and (

 

H

 

0

 

 

 

2) – biotic interactions do not exert a

significant role in predictions of altered species’ ranges under climate change.

 

Location

 

Europe.

 

Methods

 

Generalized additive modelling (GAM) was used to investigate relationships

between species and climate; species and host plants; and species and climate + host

plants. Because models are sensitive to the variable selection strategies utilised,

four alternative approaches were used: AIC (Akaike’s Information Criterion),

BIC (Bayesian Information Criterion), BRUTO (Adaptive Backfitting), and CROSS

(Cross Selection).

 

Results

 

In spite of the variation in the variables selected with different methods,

both hypotheses (

 

H

 

0

 

 

 

1 and 

 

H

 

0

 

 

 

2) were falsified, providing support for the proposition

that biotic interactions significantly affect both the explanatory and predictive

power of bioclimatic envelope models at macro scales.

 

Main conclusions

 

Our results contradict the widely held view that the effects

of biotic interactions on individual species distributions are not discernible at

macroecological scales. Results are contingent on the species, type of interaction and

methods considered, but they call for more stringent evidence in support of the idea

that purely climate-based modelling would be sufficient to quantify the impacts of

climate change on species distributions.
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INTRODUCTION

 

Attempts to forecast climate-change impacts on biodiversity

have often relied on the bioclimate ‘envelope’ modelling

approach, whereby present-day distributions of species are

combined with environmental variables to enable projected

distributions of species under future climate scenarios (e.g. Berry

 

et al

 

., 2002; Peterson

 

 et al

 

., 2002; Thuiller

 

 et al

 

., 2005; Araújo

 

et al

 

., 2006). The validity of this approach has been questioned

on the grounds that important biotic interactions – in particular

interspecific competition – are not taken into account within

models (e.g. Davis

 

 et al

 

., 1998; Leathwick, 2002). In response to
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this criticism it has been proposed that biotic interactions might

play a relatively minor role in governing species distributions at

regional to continental scales (Pearson & Dawson, 2003), where

climate is expected to exert a dominant role. We investigate this

idea and ask whether the inclusion of simple biotic interactions

in bioclimate ‘envelope’ models (here the presence and absence

of four larval host plants of the genus 

 

Corydalis

 

) would sig-

nificantly alter predictions of climate-change impacts on one

particular species of butterfly (clouded Apollo, 

 

Parnassius

mnemosyne

 

; Linnaeus, 1758) distributed across Europe. In

contrast to previous studies that investigated the role of interspecific

competition in the predictive performance of models at local to

regional scales (Leathwick & Austin, 2001; Anderson

 

 et al

 

., 2002;

Leathwick, 2002), our analyses focus on the rather more

neglected phenomena of parasitism at a continental scale.

The idea that biotic interactions could affect the predictions of

bioclimate ‘envelope’ models was explored by Davis 

 

et al

 

. (1998).

The authors used a simple microcosm experiment including

three fruit fly species (

 

Drosophilia

 

 spp.) and a parasitoid wasp

(

 

Leptopiliana boulardi

 

) to show the impact of interspecific

competition on the distribution of species under simulated

climate change. Using a particular cline of 15 

 

°

 

C it was demon-

strated that competition markedly altered the distributions of

all three fruit fly species in comparison with those found in

single-species clines. Under simulated warming, unexpected

effects on the distribution and abundance of fruit fly species

were produced, including the reversal of the species’ relative

abundance at some temperatures. The authors concluded that

biotic interactions should be included in predictions of species’

responses to climate change, without which predictions from

bioclimate envelope models could be misleading. The conclu-

sions of this study were challenged by Hodkinson (1999), who

provided evidence of cases where species’ distributions were

directly affected by climate.

One potential criticism to the conclusions made by Davis 

 

et al

 

.

(1998) is that the scaling up of results of a microcosm experiment

to macroecological scale may not be appropriate. Indeed, it is

widely contended that processes operating at a local scale (such

as interspecific competition or parasitism) do not exert a

similarly dominant role at macroecological scales (e.g. Huston,

1999; Whittaker

 

 et al

 

., 2001). Pearson & Dawson (2003) proposed

a hierarchical framework for modelling whereby climate would

be expected to exert a dominant role in governing species’

distributions across regional and continental scales (e.g. > 200 km),

whereas biotic interactions would be expected to play a major

role at local scales (e.g. < 1 km) (see also Pearson

 

 et al

 

., 2004).

The framework proposed by Pearson and Dawson is drawn from

a tradition followed by a number of ecologists, including

Whittaker (1975) who showed that the distribution of the

main terrestrial biomes of the world could be explained by the

distribution of mean temperature and precipitation values alone

(see also Holdridge, 1947). The idea that climate would govern

the distribution of biota at macro scales was also supported by

recent studies showing that species distributions models, including

climate variables, would have a greater degree of explanatory and

predictive power than models including land-cover variables at

continental (Europe, Thuiller

 

 et al

 

., 2004) and regional scales

(Britain, Pearson

 

 et al

 

., 2004; Great Lakes Basin including parts of

Canada and USA, Venier

 

 et al

 

., 2004; Finland, Luoto

 

 et al

 

., 2006).

Even though climate is known to affect the distributions of

species, there is limited evidence in support of the companion

idea that biotic interactions would not play a major role

constraining current and future species distributions at macro-

ecological scales. Here, we examine this idea and provide a test

of the null hypotheses that: (

 

H

 

0

 

 

 

1) – biotic interactions do not

exert a significant role in explaining current distributions of a

particular species of butterfly in Europe; and (

 

H

 

0

 

 

 

2) – biotic interac-

tions do not exert a significant role in predicting species distribution

shifts under climate change scenarios. Testing hypotheses about

the mechanisms underlying species’ responses to climate change

is problematic, not least because events being tested have not yet

occurred (Araújo

 

 et al

 

., 2005b). Furthermore, when hypotheses

concern processes operating at macroecological scales, the

problem is entangled by the difficulty in designing fully controlled

experiments (Brown, 1995). An alternative is to use what we

term here ‘surrogate hypotheses’. Surrogate hypotheses are

expected to correlate with the hypotheses under investigation,

but they are assessed from an examination of patterns in the data

rather than by the processes causing them. The falsification of

surrogate hypotheses provides an indirect and thus less powerful

protocol for hypothesis testing than standard manipulative

experiments. However this is a familiar – and often necessary –

procedure in macroecology, where a starting null hypothesis is

often that the observed pattern is a simple consequence of the

null expectation (Gotelli & McGill, 2006). The difficulty in

discerning cause and effect may be partly surmounted by offering

repeated evidence of patterns using a variety of surrogate

hypotheses applied to different taxa and regions (e.g. Blackburn

& Gaston, 1998; Gaston & Blackburn, 1999). Even when such

evidence is provided it may be difficult to separate correlation

from causation. Here we formulate three surrogate hypotheses

and discuss the context in which they can be seen as providing

support or dismissal for the two null hypotheses under investigation.

 

DATA AND METHODS

Species data

 

The European distribution of the clouded Apollo butterfly was

digitized from the atlas 

 

Butterflies of Europe

 

 (Kudrna, 1985) and

resampled to the 50 

 

×

 

 50 km 

 

Atlas Flora Europaeae

 

 (AFE) grid

system (Jalas & Suominen, 1972–1996) to allow matching with

other data (Fig. 1). Individual AFE cells were classified as

‘clouded Apollo present’ if more than 50% of the European

butterflies atlas cells covered per AFE cell had the species

recorded as present. Host plants associated with the larval state of

the clouded Apollo butterfly were identified from the literature

(see Luoto

 

 et al

 

., 2001, and references therein) and included four

species of the genus 

 

Corydalis

 

: 

 

C. solida

 

, 

 

C. intermedia

 

, 

 

C. cava

 

and

 

 C. pumila

 

. European distributions of the four 

 

Corydalis

 

species were obtained from a digitised version of AFE (Lahti &

Lampinen, 1999).
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Climate data

 

A set of aggregated climate parameters was derived from an

updated version of the monthly climate data of New 

 

et al

 

. (2000).

The updated data provide monthly values for the years

1901–2000 on a 10

 

′

 

 

 

×

 

 10

 

′

 

 spatial resolution (Mitchell

 

 et al

 

.,

2004). Average monthly temperature and precipitation in grid

cells covering the mapped area of Europe were used to calculate

mean values of six different climate parameters for the period of

1961–1991 (referred to as baseline data). Variables included:

mean annual temperature within time slices (TANN; 

 

°

 

C); mean

temperature of the coldest month (MTC; 

 

°

 

C); mean annual

summed precipitation (PANN; mm); mean sum of precipitation

between July and September (PSUM; mm); mean sum precipitation

between December and February (PWIN; mm); and growing

season (GDD), defined as the mean annual growing degree days

(> 5 

 

°

 

C). Choice of variables was made to reflect two primary

qualities of the climate – i.e., energy and water – that, on the basis

of prior knowledge, have known roles in imposing constraints

upon plant and butterfly species distributions as a result of

widely shared physiological limitations (e.g., Prentice

 

 et al

 

., 1992;

Hill

 

 et al

 

., 1999; Parmesan

 

 et al

 

., 1999). We used one climate

change scenario produced by the HadCM3 GCM (Hadley Centre

for Climate Prediction and Research general circulation model)

averaged for the period of 2036–2065 (referred to as 2050

scenario, Schröter

 

 et al

 

., 2005) using the A1FI (fossil intensive)

emission scenario (Nakicenovic & Swart, 2000). We used

only one scenario because our prime interest was to assess the

sensitivity of models to the inclusion of biotic interactions rather

than to the GCM or emission scenarios used.

 

Modelling

 

Generalised Additive Models (GAMs; Hastie & Tibshirani, 1990)

were fitted to assess three types of relationships: species–climate

(hereafter termed GAM climate); species–host plants (hereafter

termed GAM host plant); and species–climate + host plants

(hereafter termed GAM climate + host plant). Predictor

variables were smoothed with four degrees of freedom. Because

models are sensitive to the variable selection procedures utilized

(for discussion see Araújo & Guisan, 2006, and Heikkinen

 

et al

 

., 2006), four alternative approaches were used: AIC

(Akaike’s Information Criterion; Akaike, 1974), BIC (Bayesian

Information Criterion; Schwartz, 1979), CROSS (Cross

Selection; Stone, 1977), and BRUTO (Adaptive Backfitting;

Hastie & Tibshirani, 1990). These four approaches were first

applied and compared in the context of species distribution

modelling by Maggini 

 

et al

 

. (2006).

Figure 1 European distribution of the 

clouded Apollo butterfly (Parnassius 

mnemosyne) and the three species of the 

genus Corydalis that are known to act as larval 

host plants.
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Models were calibrated using a 70% random sample of the

clouded Apollo butterfly distribution and evaluated against

the remaining 30% of the data (for details on the design of

the modelling experiment see Table 1). This procedure of cross

validation was repeated ten times (yielding a 10-fold cross validation)

to assess the sensitivity of projections to variations in the data

used for calibration of the models (i.e., the initial conditions),

thus providing a measure of model stability. Modelled species

probabilities of occurrence were transformed into presence and

absence records using a cut-off defined by the prevalence (the

proportion of species occurrences among all grid cells) of

clouded Apollo butterflies in the studied area. This approach for

identification of cut offs is attractive for its simplicity and

because it has been shown to be at least as effective as the more

complex sensitivity-specificity sum maximization, sensitivity-

specificity equality and ROC plot based approaches (for discussion

see Liu

 

 et al

 

., 2005). Evaluation of models consisted of measurements

of agreement between observed and modelled distributions

obtained by calculating the Cohen’s Kappa statistic index of

similarity (Kappa) and the area under the curve (AUC) of the

receiver operating characteristic (ROC) (Fielding & Bell, 1997).

The European distribution of the clouded Apollo butterfly was

projected into the future using the A1FI HadCM3 GCM climate

scenario for 2050, and assuming unlimited dispersal (i.e., the

species is able to track climate changes and disperse to areas with

suitable environments); this assumption was considered to be

reasonable given the evidence that butterfly species are already

responding to observed climate changes by swift tracking of their

climate envelope (e.g. Wilson

 

 et al

 

., 2005; Hickling

 

 et al

 

., 2006).

Again three models were used: GAM climate; GAM host plant;

and GAM climate + host plant. To fit the two latter models we

projected distributions of 

 

Corydalis

 

 species for 2050 and

included projected distributions as covariates in the models.

Because we were unable to make robust statements about the

dispersal ability of the 

 

Corydalis

 

 species we considered two

extreme scenarios of dispersal: unlimited dispersal (as for the

clouded Apollo butterfly); and no dispersal (species unable to

track climate changes thus contract whenever portions of their

range become climatically unsuitable). The ‘truth’ regarding the

dispersal of these three species is likely to lie somewhere in the

middle. Future potential distributions of 

 

Corydalis

 

 species were

modelled with GAM climate, using the same procedure adopted

for modelling the clouded Apollo butterfly (for more details see

Table 1).

All models were fitted with the GRASP v. 3.1 package

(Lehmann

 

 et al

 

., 2003) for S-PLUS (Insightful Corp., Seattle,

USA). Kappa and AUC calculations were carried out using SPSS

v. 10 for Windows (Norusis, 1999).

 

Hypothesis testing

 

To test the first null hypothesis (

 

H

 

0

 

 

 

1) that biotic interactions do

not exert a significant role in explaining current distributions of

the clouded Apollo butterfly in Europe, we formulated two

surrogate hypotheses: (

 

SH

 

0

 

 

 

1.1) – stepwise AIC, BIC, BRUTO

and CROSS GAM models fitted with the possibility of selecting

covariates representing both climate and host plants (i.e.,

occurrence of 

 

Corydalis

 

 species) will not select host plants; and

(

 

SH

 

0

 

 

 

1.2) – estimators of model performance (i.e., explained

deviance on calibration (D

 

2

 

), Kappa, and AUC values estimated

on the evaluation data) will not vary significantly (

 

P 

 

> 0.05)

between GAM climate and GAM host plant models and between

Table 1 Modelling design for: (a) testing the null hypothesis (H0 1) – that biotic interactions do not exert a significant role in explaining current 

distributions of the clouded Apollo butterfly (Parnassius mnemosyne) in Europe; and (b) testing the null hypothesis (H0 2) – that biotic interac-

tions do not exert a significant role in predicting species distribution shifts under climate change scenarios.

(a)

1. Split clouded Apollo distribution data randomly into calibration (70%) and validation (30%) sets and repeat the procedure 10 times to obtain different 

data for calibration and evaluation of models.

2. Run AIC, CROSS, BIC and BRUTO generalized additive models (GAMs) with climate predictors alone (GAM climate) for each one of the 10 randomly 

derived calibrations sets (40 model runs).

3. Run AIC, CROSS, BIC and BRUTO GAMs with Corydalis host plant predictors (GAM host plant) alone for each one of the 10 randomly derived 

calibrations sets (40 model runs).

4. Run AIC, CROSS, BIC and BRUTO GAMs with climate and host plant predictors (GAM climate + host plant) for each one of the 10 randomly derived 

calibrations sets (40 model runs).

5. Transform modelled species probabilities of occurrence from the 120 models (obtained in steps 2, 3 and 4) into predictions of presence and absence of 

clouded Apollo using a cut-off defined by prevalence.

6. Evaluate GAM models by measuring agreement between observed and modelled distributions of clouded Apollo using Kappa and AUC procedures.

(b)

7. Model Corydalis species distributions with climate predictors (AIC, BIC, BRUTO and CROSS GAMs) and project their potential distributions in 2050 

with the AFI HadCM3 GCM model (models).

8. Transform modelled probabilities of occurrence from models using a cut-off defined by prevalence (as in step 5). 

9. Generate two scenarios of future potential distributions of Corydalis: (i) with unlimited dispersal (species are able to disperse to areas with suitable 

environments); and (ii) with no dispersal (species are unable to disperse to areas with suitable environments, thus only being able to lose potential range).

10. Project distributions of the clouded Apollo butterfly in 2050 with the A1FI HadCM3 GCM model. For GAM climate + host plant and GAM host plant 

use modelled Corydalis distributions from steps 7 and 8.
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GAM climate and GAM climate + host plant models. If the result

of the first test is that host plants are selected by stepwise models,

then we falsify 

 

SH

 

0

 

 

 

1.1 and support the alternative hypothesis

that variables accounting for biotic interactions might matter.

If the inclusion of host plants as predictor variables leads to

improvements in model performance, then additional support

for the alternative hypothesis that biotic interactions matter is

obtained.

Ideally, the second hypothesis (

 

H

 

0

 

 

 

2), that biotic interactions

do not exert a significant role in predictions of species distributions

shifts under climate change scenarios, should be tested with

independent evaluation data (Araújo

 

 et al

 

., 2005a). Such data

were unavailable to us and they are unlikely to become available

at macroecological scales. Consequently, we performed a sensitivity

analysis to assess how model outputs varied when different sets

of predictor variables (with and without biotic-interaction

terms) are used. More specifically, we examined the surrogate

hypothesis (

 

SH

 

0

 

 

 

2.1) that projections of species range shifts

under climate change with GAM climate, GAM host plant, and

GAM climate + host plant are not significantly different from

each other. The underlying assumption is that if the inclusion of

host plants as covariates in the models has no discernible effect in

projections of altered species distributions under climate change,

then its use is unnecessary. Of course, falsifying this hypothesis,

i.e., demonstrating that a variable has an effect in a model output,

does not prove that the effect is useful. However, falsification of

 

SH

 

0

 

 

 

2.1 can lead to an interpretation that inclusion of biotic

interactions within models is useful for making projections of

future species distributions if 

 

SH

 

0 

 

1.2 is also falsified (host plant

variables improve estimates of model performance with

non-independent data).

Agreement of model projections was measured using the

Kappa statistic (e.g. Monserud & Leemans, 1992). Differences in

model outputs produced with climate, host plant, and climate +

host plant covariates (

 

SH

 

0

 

 

 

1.2, and 

 

SH

 

0

 

 

 

2.1) were tested using

Wilcoxon signed-rank tests for related samples. Statistical tests

were carried out using SPSS v. 12 for Windows.

 

RESULTS

 

GAM climate models consistently selected the same four

temperature and precipitation variables, whilst summer precip-

itation and growing degree days were less likely to be selected

(Table 2). When the occurrence of 

 

Corydalis

 

 host plants was

considered alongside climate variables (GAM climate + host

plant), the models selected three climate variables consistently

(now including summer precipitation) and the host plant 

 

Corydalis

solida

 

 (Table 2). When models were fitted using the occurrence of

host plants alone (GAM host plant), 

 

Corydalis solida

 

 and 

 

C. cava

 

were selected consistently by all models, whereas 

 

C. intermedia

 

was excluded by all BIC models and 

 

C. pumila

 

 was selected only

twice with the CROSS method. Whilst confirming the importance

of energy and water related variables, these results also highlight

the importance of including the presence of the host plant 

 

C. solida

 

to explain the distribution of clouded Apollo butterfly at the macro

scale in Europe, thus falsifying the surrogate null hypothesis

(

 

SH

 

0

 

 

 

1.1) that models fitted with the possibility of selecting

covariates representing both climate and host plants would not

select host plants.

All measures of model performance, i.e., explained deviance

(D

 

2), Kappa and ROC values were lowest with GAM host plant

followed by GAM climate then GAM climate + host plant,

irrespective of the variable selection procedure used (Table 3).

Model performance was significantly different (P < 0.01 for D2

and P < 0.05 for Kappa and AUC) between GAM host plant and

GAM climate, and between GAM climate and GAM climate +

host plant (Table 3). In other words, both the ‘explanatory’ (in

calibration) and ‘predictive’ power of models (in non-independent

validation, sensu Araújo et al., 2005a) were greater with climate

than with host plant models, but models were significantly

improved (except when using BIC) when host plants were

considered alongside climate variables. These results provide a

falsification of the surrogate null hypotheses (SH0 1.2) that

Table 2 Variables selected in ‘GAM climate’, ‘GAM host plant’ and 

‘GAM climate + host plant models’. Model selection is based on 

forward-backward stepwise AIC (Akaike’s Information Criterion), 

BIC (Bayesian Information Criterion), BRUTO (Adaptive 

Backfitting), and CROSS (Cross Selection). A 10-fold cross 

validation procedure was adopted so that 10 model runs were 

performed for each selection and the number of times each variable 

was selected was counted.

AIC BIC BRUTO CROSS Mean

GAM climate

GDD 0 0 5 10 3.75

TANN 10 10 10 10 10

MTC 10 10 10 10 10

PANN 10 10 10 10 10

PSUM 10 0 6 10 6.5

PWIN 10 10 10 10 10

GAM host plant

Corydalis solida 10 10 10 10 10

C. intermedia 10 0 10 10 7.5

C. cava 10 10 10 10 10

C. pumila 0 0 0 2 0.5

GAM climate + host plant

GDD 0 0 5 10 3.75

TANN 10 2 6 10 7

MTC 9 0 10 10 7.25

PANN 10 10 10 10 10

PSUM 10 10 10 10 10

PWIN 10 10 10 10 10

C. solida 10 10 10 10 10

C. intermedia 0 0 0 3 0.75

C. cava 0 0 1 3 1

C. pumila 2 0 3 5 2.5

GDD, mean annual growing degree days (> 5 °C); TANN, mean annual 

temperature within time slices (°C); MTC, mean temperature of the 

coldest month (°C); PANN, mean annual summed precipitation (mm); 

PSUM, mean sum of precipitation between July and September (mm); 

PWIN, mean sum precipitation between December and February (mm).
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estimators of model performance would not vary significantly

between GAM climate and GAM climate + host plant.

Spatial projections of the future distribution of the clouded

Apollo butterfly in Europe differed visibly across the GAM

climate, GAM host plant, and GAM climate + host plant (Fig. 2),

suggesting that the incorporation of a biotic interaction term in

the models has an effect in the projections of future species’

potential distributions.

Projections were more similar (Wilcoxon signed-rank test,

P < 0.001) when models were calibrated with a combination of

climate and host plant variables (mean ‘within’ model-selection-

technique agreement Kappa = 0.94; mean ‘between’ model-

selection-technique agreement Kappa = 0.91) than when models

were calibrated with climate predictors alone (mean ‘within’

model-selection-technique agreement Kappa = 0.92; mean

‘between’ model-selection-technique agreement Kappa = 0.86)

(see Table 4 for all results). Pure host plant models produced

almost identical projections (mean ‘within’ model-selection-

technique agreement Kappa = 1.00; mean ‘between’ model-

selection-technique agreement Kappa = 0.99), because the

presence of Corydalis solida dominated the structure of all models.

In other words, models using host plants as predictor variables

projected the presence of clouded Apollo when C. solida was

present and the absence of clouded Apollo when C. solida

was absent; this was true even when other Corydalis species were

present. More importantly, the degree of coincidence between

model projections (GAM climate versus GAM climate + host

plant, mean Kappa = 0.70, SD = 0.03; and GAM climate versus

GAM host plant, mean = 0.40, SD = 0.02) was also significantly

lower (Wilcoxon signed-rank test, P < 0.001) than the degree of

Model

Variable 

selection D2 (cal.) Kappa (eval.) AUC (eval.)

Climate AIC 0.291 ± 0.015 0.417 ± 0.038 0.847 ± 0.018

BIC 0.282 ± 0.016 0.419 ± 0.042 0.844 ± 0.019

BRUTO 0.268 ± 0.015 0.401 ± 0.044 0.839 ± 0.020

CROSS 0.292 ± 0.015 0.417 ± 0.039 0.847 ± 0.017

Host plant AIC 0.182 ± 0.011** 0.323 ± 0.027* 0.788 ± 0.016*

BIC 0.179 ± 0.011** 0.324 ± 0.026* 0.783 ± 0.017*

BRUTO 0.182 ± 0.011** 0.323 ± 0.027* 0.788 ± 0.016*

CROSS 0.182 ± 0.011** 0.323 ± 0.027* 0.788 ± 0.016*

Climate + host plant AIC 0.363 ± 0.014** 0.438 ± 0.033* 0.880 ± 0.013*

BIC 0.341 ± 0.014** 0.421 ± 0.028 0.874 ± 0.015*

BRUTO 0.341 ± 0.014** 0.427 ± 0.033* 0.873 ± 0.015*

CROSS 0.366 ± 0.014** 0.443 ± 0.035** 0.880 ± 0.013*

*P < 0.05; **P < 0.01 (based on Wilcoxon signed-rank tests for related samples assessing differences 

between: climate versus host plant models; and climate versus climate + host plant models).

Table 3 Mean model performance measures 

applied to climate and climate-interaction 

models. D2 = explained deviance of the model 

calibration data (cal.). Kappa and area under 

curve (AUC) values are based on evaluation 

data set (eval.). The threshold for Kappa is 

based on prevalence of data used for model 

calibration. AIC, Akaike’s Information 

Criterion; BIC, Bayesian Information 

Criterion; BRUTO, Adaptive Backfitting; 

CROSS, Cross Selection.

Model AIC BIC BRUTO CROSS

Climate

AIC 0.91; 0.02** 0.83; 0.04** 0.85; 0.03** 0.91; 0.03**

BIC 0.93; 0.02** 0.90; 0.03** 0.83; 0.04**

BRUTO 0.91; 0.03** 0.84; 0.04**

CROSS 0.91; 0.02**

Host plant

AIC 1.00; 0.00 0.99; 0.01** 0.99; 0.02** 0.99; 0.01**

BIC 1.00; 0.00 0.99; 0.01** 1.00; 0.01**

BRUTO 1.00; 0.00 0.99; 0.01**

CROSS 1.00; 0.00

Climate + host plant

AIC 0.94; 0.03** 0.90; 0.02** 0.90; 0.02** 0.93; 0.02**

BIC 0.97; 0.01** 0.91; 0.01** 0.89; 0.02**

BRUTO 0.93; 0.02** 0.90; 0.02**

CROSS 0.92; 0.02**

**P < 0.001 (based on Wilcoxon signed-rank tests for related samples assessing (in bold) ‘intra’ 

model-selection agreement (e.g. Climate AIC) and ‘inter’ model-selection agreement (e.g. Climate 

AIC vs. Climate BIC)).

Table 4 Kappa values (as a measure of 

agreement) and standard deviation of these 

values among modelled future distributions 

of the clouded Apollo butterfly (Parnassius 

mnemosyne) (assuming unlimited dispersal 

of the host plants). AIC, Akaike’s Information 

Criterion; BIC, Bayesian Information 

Criterion; BRUTO, Adaptive Backfitting; 

CROSS, Cross Selection.
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Figure 2 European modelled distribution of the clouded Apollo butterfly (Parnassius mnemosyne) for baseline and future (2050) conditions 

assuming unlimited dispersal (UD) and no dispersal (ND) among larval host plants, Corydalis spp. Results for the three model outputs (one 

Akaike’s Information Criterion (AIC) generalized additive model (GAM) out of ten simulations of initial conditions) are presented: 

(first column) climate model; (second column) climate + host plant model; and (third column) host plant model.
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coincidence within overall model projections (mean

Kappa = 0.92; SD = 0.03). These latter results provide a falsification

of the surrogate null hypothesis (SH0 2.1) that differences in

projections of species range shifts under climate change with

GAM climate, GAM host plant, and GAM climate + host plant

are not significantly different from each other.

DISCUSSION

The three surrogate null hypotheses formulated to investigate the

idea that biotic interactions would not exert a dominant role at

macroecological scales were falsified. These results invite the

interpretation that more stringent evidence is required to

support the conjecture that present-day species–climate relation-

ships would suffice to allow realistic estimates of species’

responses to climate change at macroecological scales. Previous

studies investigating the potential implications of biotic interactions

on empirical modelling of species distributions have offered

evidence that the explanatory power of models at a local to

regional scale could be affected by biotic interactions, such as

interspecific competition (Leathwick & Austin, 2001; Anderson

et al., 2002; Leathwick, 2002). Here, we provide evidence that

biotic interactions might also matter at macroecological scales;

that they affect models of altered species’ distributions under

climate change scenarios; and that, apart from negative interactions

such as interspecific competition, positive and neutral inter-

actions are also likely to play a role in shaping the dynamic

responses of species to changes in climate. This latter observation

coincides with evidence from empirical (e.g. Callaway et al.,

2002) and simulation (e.g. Travis et al., 2005) experiments

that positive interactions can be predominant, especially in

conditions of abiotic stress that are typical of periods of accelerated

climate change. Our results also show that if climate and biotic

interactions are considered in isolation, there is a higher

likelihood that the former would yield models with higher

explanatory and predictive values.

Nevertheless, an appropriate interpretation of our results

requires an assessment of the assumptions and limitations of our

analyses. At least three issues deserve discussion. Firstly, it is

important to acknowledge that we modelled only one species

and its identity was not chosen at random: the species was

selected because there was a suggestion that at least three host

plant species would be important to explain its distribution at

local and landscape levels (e.g. Luoto et al., 2001; Heikkinen

et al., 2005). It is thus open to debate whether the results

obtained with the clouded Apollo butterfly in Europe are repre-

sentative of larger samples of species, although a previous study

using a different species at a smaller spatial scale (both grain and

extent) coincides with our conclusion that the inclusion of

positive biotic interactions into bioclimatic ‘envelope’ models

may increase their performance (Gutiérrez et al., 2005). The

importance of positive interactions for modelling species’

responses to climate change is likely to be related to the degree of

species’ specialisation within assemblages of a given region; the

more specialized species assemblages are, the more dependent

they should be on the fate of other species. Huntley (1997)

argued that most species are generalists rather than specialists,

but this pattern is likely to be spatially uneven (Julliard et al.,

2006). Indeed, a distinction has often been made between the

relative importance of abiotic and biotic interactions, with the

latter typically being regarded as being more important at lower

latitudes (e.g. Dobzhansky, 1950; MacArthur, 1972).

Secondly, we used an indirect hypothesis-testing protocol

based on surrogate hypotheses. This is a familiar approach in

macroecology but one that is less powerful than using fully

controlled experiments. For example, there is a risk that including

species distributions as predictor variables in a model of another

species might not truly reflect a biotic interaction but simply the

absence of important environmental predictors in the model

(e.g. Guisan & Thuiller, 2005). In the case of this study we had

a priori knowledge on the biology of the clouded Apollo butterfly,

so there was a robust mechanistic basis for choosing biotic

interaction predictors among many alternatives; this may not

always be possible.

Thirdly, the results are sensitive to the data and statistical

techniques used. Although the multiple variable selection and

cross-validation procedures adopted in this study are a first step

towards exploring sensitivities of model outcomes to variations

in input data and to variable selection functions, there are other

sources of variability that were not explored here (e.g. Johnson &

Omland, 2004). For example, some variable selection procedures

differ between modelling techniques. Hence, different tech-

niques might select different variables, thus compromising the

conclusions of any study that uses one modelling technique

alone. Furthermore, we did not explore the full breadth of

variable selection techniques available. There are a number of

relatively unexplored approaches such as multi-model inference,

boosting and model averaging, shrinkage methods, or hierarchical

partitioning coupled with randomization procedures that may

allow for more robust variable selection estimates (for discussion,

see Araújo & New, 2007).

Despite the potential shortcomings and uncertainties of

our analysis, this is the first study that explicitly addresses the

consequences of incorporating simple biotic interaction terms for

modelling species responses to climate change at macroecological

scales. Our results have two important implications. From a

fundamental standpoint, they support the widely held conjecture

that climate is the main determinant of species’ distributions at

macroecological scales, although the companion idea that biotic

interactions play a minor role in governing distributions of

species at macroecological scales is not fully supported. From an

applied perspective, the results also stimulate questions about the

appropriateness of making forecasts of species range shifts

without taking into account relevant biotic interactions (see also

Davis et al., 1998). Naturally, the critical issue is not whether

biotic interactions matter at macroecological scales, but how

much? This is a difficult question to answer because we lack

independent validation data for testing the impact of biotic

interactions on model outputs under climate change conditions

(Araújo et al., 2005a), and even if we were offered such a validation

set there would be epistemological difficulties in confirming

whether agreement between observed and predicted events
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would provide unequivocal validation of models (Oreskes,

1998). Nevertheless, our results suggest that lack of consideration

of host plant distributions within models – or arguably any other

biotic relevant interaction – has important consequences for

assessing climate change impacts on species distributions. For

example, estimates of potential range shifts of clouded Apollo

butterflies varied from 19.1% loss of suitable European grid cells

(climate model) to 29.5% (climate + host plant model assuming no

dispersal of the host plant), whereas gains of suitable cells varied

between 13.6% (host plant model assuming no dispersal) and

69.9% (host plant model assuming unlimited dispersal of host

plant; climate model projecting 36.2% cell gains) (Table 5).

Clearly it is difficult to obtain sufficient knowledge and data to

parameterise macro-scale species distribution models that

include complex biotic interactions. There is the further com-

plication that biotic interactions measured for a given time t1 in

a given locality might not hold true for a time t2 subject to

climate change (e.g. Klanderud & Totland, 2005). To disentangle

this Gordian knot we need to move towards greater integration

of multiple-scale ecological studies, whereby relationships at site

to landscape levels are measured and used to inform macro-scale

species’ distribution models; these measured relationships

should, in turn, be tested against coarse-resolution presence–

absence data in a similar vein to that used in this study (but see

also Leathwick & Austin, 2001; Anderson et al., 2002; Leathwick,

2002). If such communication between researchers working at

different spatial scales is not achieved we might need to wait

many years until more definite answers to the problem addressed

here are provided.
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