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Ecological communities are defined by species interacting dynamically in a given location 
at a given time, and can be conveniently represented as networks of interactions. Pairwise 
interactions can be ascribed to one of five main types, depending on their outcome 
for the species involved: amensalism, antagonism (including predation, parasitism and 
disease), commensalism, competition or mutualism. While most studies have dealt so 
far with networks involving one single type of interaction at a time, often focusing on 
a specific clade and/or guild, recent studies are being developed that consider networks 
with more than one interaction type and across several levels of biological organisation. 
We review these developments and suggest that three main frameworks are in use to 
investigate the properties of multiple interactions networks: ‘expanded food-webs’, 
‘multilayer networks’ and ‘equal footing networks’. They differ on how interactions 
are classified and implemented in mathematical models, and on whether the effect of 
different interaction types is expressed in the same units. We analyse the mathematical 
and ecological assumptions of these three approaches, and identify some of the  
questions that can be addressed with each one of them. Since the overwhelming majority 
of studies on multiple interactions are theoretical and use artificially generated data, we 
also provide recommendations for the incorporation of field data in such studies.

Community ecology and network theory

Ecological communities should be defined not only by lists of co-occurring species, 
but also by the myriad of interactions taking place among them. A convenient way to 
include information about both species composition and their interactions is to repre-
sent communities as networks in which species are nodes connected by links represent-
ing biotic interactions. Network analyses can provide insights into community local 
stability (Allesina and Tang 2012) and robustness to extinctions (Riede et al. 2011), 
the degree of specialization of individual species or guilds (Dorado et al. 2011), the 
impact of invasive species or climate change on established communities (Lopezaraiza-
Mikel et al. 2007) and, more generally, on any question in which pairwise interactions 
relate to community patterns and processes.
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Networks can accommodate different types of data, 
depending on the nature of the links between species (e.g. 
qualitative, quantitative, static, dynamic), the temporal and 
spatial resolution of the community, the level of aggregation 
of the nodes (e.g. individuals, species, trophic guilds), or the 
specific objectives of the study. A common simplification is 
to study networks of a single interaction type, e.g. trophic 
(McCann 2011) or mutualistic (Bascompte and Jordano 
2013), assuming (often implicitly) that the effect of other 
interactions on community dynamics is negligible com-
pared to the ones analysed. Such an assumption is usually 
unavoidable given the lack of comparable data on different 
interaction types, but it is becoming increasingly clear that 
the effects of interactions not accounted for in analyses of 
single-interaction networks (including indirect ones; but see 
Cazelles et al. 2015) might be significant for species persis-
tence (Soliveres et al. 2015, Kéfi et al. 2016) and community 
structure (Sander et  al. 2015, Golubski et  al. 2016). Fur-
thermore, analyses of interaction networks of a single type 
often yield differential results regarding the factors that drive 
their stability. For example, among the factors reported to 
stabilize food webs are high modularity and low connectance 
(Thébault and Fontaine 2010), correlation in pairwise 
interaction strengths (Tang et  al. 2014), trophic coherence 
(Johnson et  al. 2014), a preponderance of weak (McCann 
et al. 1998) and asymmetrical interactions (Bascompte et al. 
2006), degree distributions broader than those of random 
graphs (Allesina et al. 2015), or the appearance of general-
ist consumers coupling resources with different interaction 
strengths (Rip et al. 2010). On the other hand, mutualistic 
networks are thought to be more stable when highly nested 
and connected (Thébault and Fontaine 2010, Lever et  al. 
2014), when there are demographic responses to interactions 
(Lee 2015), or when mutualistic interactions are relatively 
strong (Rohr et al. 2014). The persistence and resilience of 
communities defined with multiple interaction types, how-
ever, will additionally likely be influenced at least by 1) the 
proportion of the different interaction types, 2) the relative 
strength of pairwise interactions both within and among 
interaction types, and 3) the structural properties of each 
sub-network and the overall aggregated network.

The study of single-interaction networks in ecology has 
progressed enormously in the last decades, both theoreti-
cally and empirically. In parallel, the analysis of multiple 
interactions networks has also advanced in other fields of 
study (Boccaletti et al. 2014). This novel paradigm has only 
recently started to be applied to ecological studies, with sev-
eral examples of new conceptual developments being forged 
together with applications of old concepts to new problems 
(Table 1). Despite the relatively small number of studies 
using multiple interactions networks in ecology, the research 
objectives and methodologies that have been addressed are 
extremely diverse, and a synthesis of recent developments 
is timely. Here, we identify three main approaches for the 
design and analysis of ecological multiple interactions net-
works. These approaches have been used in theoretical and 

empirical studies without an explicit recognition of their con-
ceptual underpinnings. We define them explicitly, examine 
their underlying ecological assumptions, the type of questions 
best addressed with each approach, and provide recommen-
dations for the integration of empirical data.

Multiple interactions networks in ecology

Probably, the first study of ecological networks explicitly 
considering different interaction types was the classic study 
by May (1972), in which he assembled interaction matri-
ces with random coefficients from a Gaussian distribution 
N∼(0,s), thereby allowing for negative and positive pairwise 
interactions to be considered. May’s results showed that in 
theoretical communities assembled randomly, complexity 
(measured as connectance and species richness) was inversely 
related to the local stability of the system. But natural com-
munities are highly complex, diverse and, nonetheless, seem 
to persist. After that seminal study, there has been a flurry of 
studies trying to uncover the processes and structural patterns 
that confer stability to empirical communities (Saint-Béat 
et  al. 2015). However, comparable data on different inter-
action types is extremely difficult to acquire, and the focus 
for most of the second half of the 20th century has been on 
how competitive and antagonistic interactions drive popula-
tion and community patterns (Connell 1961, Paine 1966). 
As predator‒prey interactions are easiest to observe and docu-
ment in the field, the analysis of empirical networks relied 
almost entirely on food webs for a few decades. Pioneering 
works by Jordano (1987), or Fonseca and Ganade (1996), 
amongst others, paved the way for the study of mutualistic 
networks, but the first studies considering more than one 
interaction type in the same network only appeared in the 
last decade (Table 1).

Developing a theoretical framework for multiple inter-
actions networks involves the integration of a variety of 
interaction types and effects, direct and indirect, taking place 
at different temporal and spatial scales. In this review, we 
propose two main criteria for classifying such frameworks. 
The first is the classification system applied to interactions 
(Abrams 1987). Interactions can be defined based on the 
‘effect’ they produce on each member or, alternatively, on the 
‘mechanism’ by which the interaction is produced. Regarding 
effects, each interactor can be affected positively, negatively, 
or not affected at all by a pairwise interaction, regardless of the 
actual mechanisms by which the effect occurs. For example, 
a (‒,‒) interaction, defined as competition, could actually 
be realized through mechanisms as different as territorial, 
chemical or consumptive competition (Schoener 1983). By 
defining all interactions with respect to the effect on each 
member (0,‒,), every effect-based classification is complete, 
in the sense that no interaction, however idiosyncratic, is left 
unclassified. Regarding mechanisms, interactions are defined 
according to the mechanism by which they take place, 
regardless of the effect on the interacting species. Thus, con-
sumptive competition would be defined as an interaction in 
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which each member is affected by consumption of a common 
limited set of resources, territorial competition would repre-
sent limitations on the available space for each interactor, and 
so on. A virtually unlimited number of interaction categories 
can be theoretically defined under this scheme, depending on 
the questions addressed.

The second criterion distinguishes network analyses 
based on whether the strengths of different interaction types 
have common units (i.e. their effects are comparable, acting 
upon the same population property) or not. This criterion 
only applies to classification schemes based on effects as, by 
definition, strengths of interactions acting explicitly through 
different mechanisms have different units, and are thus 
not amenable to being homogenized. For example, chemi-
cal competition between two plant species may be reflected 
on the mortality rates of the interacting populations, while 
a mutualistic interaction between a plant species and a seed 
disperser bird may affect the dispersal rate of the plant and 
the population growth rate of the bird. In an effect-based 
classification with the same units for every interaction, on the 
contrary, these and every other interaction could be taken to 
affect a single property (e.g. long-term population size), and 
hence would be comparable.

Based on the two criteria proposed here, we distinguish 
three conceptual frameworks, already found in the literature, 
to construct and analyse multiple interactions networks: 
expanded food webs, multilayer networks, and equal footing 
networks (Fig. 1, Box 1).

Expanded food webs

Food webs (networks of trophic interactions) represent the 
net flow of biomass or energy among individuals (Lindeman 
1942, Paine 1966, Pimm 1982, Moore and de Ruiter 2012) 
and, more often than not, their constituent interactions are 
among the easiest to observe empirically. The study by Arditi 
et al. (2005) was probably the first in addressing the influ-
ence of other types of interactions in a large-scale food web 

framework. They assumed that non-trophic interactions 
affected the net interaction strength of consumer‒resource 
relationships, modifying the net biomass flow from 
resources to consumers. The same idea was also addressed by 
Goudard and Loreau (2008) and, recently, Kéfi et al. (2012) 
expanded it to allow non-trophic interactions to influence 
any parameter of a food web dynamic model. These studies 
share the assumption that over the food web structure, there 
are other relationships that modify and constrain the result-
ing network by acting upon specific non-trophic ecological 
mechanisms.

As a minimal example, consider a general population 
dynamics model in which each species within a set S is 
parameterized only by an intrinsic growth rate term and a 
coefficient for its effect over each of the remaining species:
dN
dt

r a N Nx
x xy y xy S

= + ∑( )
∈

	 (1)

where Nx is the abundance of species x, rx its intrinsic growth 
rate, and axy the interaction coefficient of species y over x. 
With the framework proposed by Kéfi et  al. (2012), each 
growth rate can be potentially influenced by a non-trophic 
interaction and, more generally, trait-mediated indirect inter-
actions (Peacor and Werner 1997) can be incorporated by 
modifying interaction strength parameters. Hence:
r r q Nx x xy yy S y x

∝ +
∈ ≠∑0

, 	 (2)

a a pxy xy xyz zz S z x z y
N∝ +

∈ ≠ ≠∑0
, , 	 (3)

where qxy represents the per capita influence of species y on 
the growth rate of species x, independent of their trophic 
interaction coefficients, and pxyz represents the per capita 
influence of species z on the interaction coefficient between 
species x and y.

Focusing on the biomass flow of the network, expanded 
food webs have the advantage that models complying with 
the principles of mass and energy conservation can be easily 
developed. As non-trophic interactions can influence any 

Figure 1. Three approaches for constructing and analyzing networks with multiple interaction types. In the first panel, solid lines represent 
trophic interactions, dotted lines non-trophic ones. Note that frugivory and pollination have both trophic and non-trophic components. 
In the second and third panels, solid lines represent antagonistic interactions, dashed lines mutualistic ones and dotted-dashed lines 
commensalistic ones. Data for building the network taken from the Aire Island community (see the Aire Island case study).
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Box 1. Choosing a multiple interactions network methodology

What constitutes a ‘realistic’ representation of an ecological community? The answer is likely contingent on many factors, includ-
ing the type of community being studied, the availability of empirical data and/or the ease to obtain it through observational or 
experimental studies. Although these factors, as well as research objectives and ecological assumptions, vary widely among studies, 
we propose a series of general guidelines for helping decide which multiple interactions framework is more appropriate for analyzing 
different types of data and questions (Fig. B1).

The first dichotomy is whether the study involves structural and/or dynamical analyses (in this context, dynamical analyses refer 
to model-based projections of, at least, species abundances or biomass). In the first case, countless studies have analysed network 
structure based on lists of species and presence/absence of interactions between them. An excellent example of a structural analysis 
of a multiple interactions network is the comprehensive study of the Chilean rocky shore intertidal community by Kéfi et al. (2015). 
We suggest, for such analyses, arranging data according to the multilayer framework, which provides a versatile representation of the 
network and for which there is a well established, wide set of diagnostic metrics (Pilosof et al. 2017).

When values of biomass/abundance and interaction strengths are sampled or estimated (for example, based on allometric relation-
ships, as in e.g. Kéfi et al. 2016), community dynamics can be modelled. In these cases, the influence of the parameterization on the 
results obtained should be appropriately gauged against null models, but this topic is out of the scope of our study.

If interactions are classified in terms of their effect over a certain population parameter, either equal footing or multilayer networks 
are the appropriate modelling frameworks for analyzing dynamical systems. In this situation, choosing one approach over the other 
depends crucially on our second general criterion, i.e. the units in which interaction strengths are represented. Other factors may also 
play a role, for example the presence of multilink overlap (see case study), the complexity of inter-layer links, or whether the dynamics 
of single-interaction sub-networks may be of interest when considered as separate entities. Generalizing, if it is of any interest to con-
sider interaction types separately (for example, if different interaction types are modelled through different functional forms and with 
different units) or there are complex inter-layer connections, multilayer networks should be used. If, on the other hand, the interest 
lies in the overall dynamics of the whole system, equal footing networks might be preferable.

The other branch of the flow chart in Fig. 1 represents the situation where estimates of interaction strength are classified according 
to the mechanism they act upon. In this case, if the community consists of relatively few species or functional groups, each interaction 
can be modelled in detail, and the number of parameters might still be manageable: expanded food webs provide the most appropri-
ate framework for such situations. Modelling the dynamics of a higher number of species, on the other hand, usually implies less 
mechanistic knowledge of the interactions within the community, and therefore interactions can be grouped in layers of a multilayer 
network that represent specific families of mechanisms. Notwithstanding these guidelines, as before, other factors may play a role (e.g. 
the inclusion of interaction modifiers, as in the case study). In all cases, selecting an appropriate framework will ultimately depend on 
the data at hand, the objectives of the study and the judgement and familiarity of the researchers with the different methodologies.

Figure B1. Diagram for choosing a multiple interaction network methodology, to be read starting from the upper left diamond box
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parameter of the dynamic model, the framework can accom-
modate detailed mechanisms of interactions taken from 
empirical observations or ecological hypotheses; for example, 
the differential role of mutualistic interactions over different 
vital rates (Stachowicz 2001). But not only vital rates can 
be modified: trait-mediated indirect interactions have been 
shown to have important effects on different ecological pro-
cesses (Golubski et al. 2016). As shown in Eq. 3, they can 
be seamlessly incorporated in this approach, since interaction 
strengths are usually constant parameters, just like demo-
graphic rates. The potential level of detail achievable with 
this framework, on the other hand, entails an unavoidable 
tradeoff: for models involving just a few species, a vast num-
ber of parameters would have to be accounted for in order 
to have a complete model (Golubski and Abrams 2011). 
For a food web of S species modelled after Eq. 1‒3, a full 
accounting of trophic interactions would yield S2 interaction 
parameters plus S intrinsic growth parameters. Considering 
non-trophic influences over these basic parameters would 
add up to S (S–1)qxy terms and either S2 (S–2) or 2(S2  
(S–2))pxyz terms depending on the symmetry of interactions, 
i.e. whether x→y  y→x or not. In the simplest scenario of 
symmetric interactions, a total of S3 parameters need to be 
accounted for. Further parameters would be needed if more 
sophisticated functional forms were to be considered (see the 
Aire Island case study).

Note that similar approaches could be developed to take 
any other interaction type as the base of community struc-
ture. For example, for well-resolved mutualistic networks in 
which a certain plant species is consumed by another species, 
the effect of predation could be added to the mutualistic 
network by making the plant’s mortality rate a function of 
the predator’s abundance.

Multilayer networks

The concept of networks formed by different types of inter-
actions (edges, more generally, connecting two individ-
ual nodes of the network) was first developed in the first 
decades of the 20th century in the field of social sciences, 
for characterizing social interaction networks with different 
types of relationships between individuals. Nevertheless, it 
is only in the last few years that the idea has been properly 
defined mathematically, given a consistent terminology, and 
applied to a wide variety of research objectives in, for exam-
ple, engineering, economical or social networks (see the 
reviews by Boccaletti et al. 2014 and Kivelä et al. 2014 to 
learn more about the history, methodology and applications 
of the paradigm).

The basic principle is that nodes within a network can be 
linked in different ways or in different contexts, so that the 
overall network contains two or more layers that represent 
different link types or other aspects of variation. Nodes can 
be connected to nodes of the same layer (intra-layer links) or 
to nodes of different layers (inter-layer links). Such multidi-
mensional object is called ‒ in it most general definition ‒ a 

multilayer network. An ecological community in which dif-
ferent species interact in a discrete number of ways is a very 
intuitive example of such a network (Pilosof et al. 2017): each 
interaction type would constitute a different layer within the 
‘interaction type’ aspect, and other potential layering aspects 
could be time (i.e. the realization of the network in different 
sampling campaigns) or site (different sampling plots).

Mathematically, a multilayer network consists on a qua-
druplet M   (VM,EM,V,L). Its elements are, first, a sequence 
of sets of elementary layers { }La a

d
=1, where d is the number 

of layering aspects. The full set of nodes of the network, V, 
does not include the information about which node belongs 
to which layer, so a further set of node-layer tuples encodes 
this information: V V L Lm d⊆ × × ×1 � . These node-layer 
tuples, i.e. the instances of a node in a given layer, are called 
‘state nodes’. Lastly, E V Vm M M⊆ ×  is the set of intra-layer 
and inter-layer links. This minimal definition is expanded in 
the reviews by Kivelä et al. (2014) and Pilosof et al. (2017). 
When designing multiple interactions networks, d  1, as at 
least the layering relative to interaction type will be present; 
also, links may be constrained to ‘diagonal coupling’, i.e. the 
situation in which a node will only be connected to itself 
in different layers. Representations where layers are not 
interaction types but some other grouping of the commu-
nity are also possible (Supplementary material Appendix 2).  
For modelling the dynamics of multilayer networks, any 
dynamical model representing species interactions may be 
used in which sub-networks are represented by sets of equa-
tions and, depending on the design, auxiliary equations may 
be used to connect the different state nodes of a given entity, 
or state nodes of different entities in different layers. The 
inter-layer links of a multilayer network make this frame-
work particularly versatile, as these may represent any kind 
of relationship between layers (see Supplementary material 
Appendix 1 Fig. A3 for a definition of the different types of 
links in multilayer networks, and their matrix representa-
tion). For example, a link coupling the same plant species 
in pollination and herbivory sub-networks may represent 
the effect that consumption of reproductive organs by her-
bivores has in the interactions between the plant and its 
pollinators. Inter-layer links may also represent a coupling 
between layers with different temporal or spatial scales, 
thereby explicitly accounting for the temporal or spatial 
dimension of the networks. Note that this framework may 
accommodate networks with markedly different structures. 
For example, networks where virtually all links are intra-
layer and the opposite, networks in which virtually all links 
are inter-layer, are both multilayer networks; also, networks 
whose nodes are present in every layer or in just one of them 
can fall under this framework.

Multilayer networks have been explored in a few studies 
of multiple interactions networks (Table 1), but their 
applicability in ecology goes far beyond these studies. For 
example, they have been successfully applied to reconstruct 
super (phylogenetic) trees (von Haeseler 2012), to study 
temporal and spatial variability in network structure, or to 
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the analysis of ecological processes at different scales (Pilosof 
et al. 2017). Despite the potential of the multilayer frame-
work for modelling ecological dynamics within and across 
layers, most studies listed in Table 1 have only analysed static 
structural patterns, with the only exceptions being the studies 
by Stella et al. (2016), who studied the dynamics of parasite 
spreading in multilayer ecological networks of varying struc-
tures, and by Gracía-Lázaro et al. (2017), on the influence of 
inter-layer mutualistic interactions over layers of competitive 
interactions. In general, ecological studies on multilayer net-
works are starting to show that interactions other than pred-
ator‒prey ones are also highly structured (Melián et al. 2009, 
Kéfi et al. 2015) and this topological structure has important 
consequences for different community properties (Pocock 
et al. 2012, Evans et al. 2013, Kéfi et al. 2016).

As this approach has been developed mostly in theoretical 
physics and most researchers in ecology may not be familiar 
with its terminology, a brief note is needed here. Following the 
definitions from Kivelä et al. (2014), a multilayer network is 
the most general object representing networks with multiple 
layering aspects and connections among layers. Although we 
focus on networks where the only layering aspect is interac-
tion type and are diagonally-coupled, (termed ‘multiplex’ net-
works or ‘edge-coloured multigraphs’ in Kivelä et al. 2014), 
we acknowledge that multiple interactions networks can also 
include other layering aspects and more complex patterns of 
inter-layer links. Therefore we adopt the more general term 
of multilayer networks in our review (Box 2). We will also use 
indistinctly the ‘layer’ and ‘sub-network’ terms to refer to a 
layer of specific interaction types in this framework.

Box 2. Definitions of key terms

The approach used for classifying interactions does not only have methodological consequences: it is above all constrained by the very 
definition of interaction. Hence, it is important to be clear and explicit about the definitions used.

The ones we use in this study for direct and indirect interactions are taken directly from Abrams (1987). These definitions can be 
applied both to effect-based and mechanism-based classifications, and though we define indirect interactions for completeness, we 
mainly focus on direct interactions.

For effect-based classifications, existing definitions are complete, as they cover the full spectrum of possible combinations of 
interactions in what can be described as the biotic interaction space (Araújo and Rozenfeld 2014). New terms have been introduced 
with time, e.g. expanding the definition of (,–) interactions originally described as being mainly characterized by predation to, first, 
contramensalism (Arthur and Mitchell 1989) and later, antagonism (Sousa 1993).

Within mechanism-based classifications the situation is somewhat more convoluted. In such studies, it is commonplace to study 
trophic and non-trophic interactions separately. Although defining these terms is apparently trivial, we have encountered very different 
implicit meanings of what constitutes a non-trophic interaction in the literature. For example, in the studies by Arditi et al. (2005) 
and Goudard and Loreau (2008), non-trophic interactions are defined as modifiers of trophic interactions. Prasad and Snyder (2010) 
consider non-trophic interactions to be ‘driven by one species changing the behaviour but not the density of another species’. Finally, 
Kéfi et al. (2012) interprets non-trophic interactions as being all other interactions than feeding ones, including the non-trophic 
components of pairwise interactions such as pollination or frugivory. We adopt the latter definition, as it more clearly fits within a 
simple generalizable framework, although it requires certain interactions to be split in their trophic and non-trophic components. 
Lastly, effect-based and mechanism-based classifications need not be mutually exclusive (Abrams 1987): it is common for effect-based 
interaction classes to be divided according to specific ecological mechanisms, e.g. mutualisms can be divided by considering whether 
there is a trophic component in them or not, etc.

Interaction: a change in some characteristic of a population mediated by properties or actions by individuals of other population.
Direct interaction: interaction in which the effect occurs either through direct physical contact or through a third set of entities 

produced by one of the two interactors.
Indirect interaction: interaction in which the effect occurs as a result of other effects produced by one interactor on some population 

property of a third set of entities; and the third set of entities is not produced by any of the interactors.
Trophic interaction: in the context of mechanism-based classifications, an interaction (or component of one) that involves direct 

exchange of energy (biomass) between the two individuals.
Non-trophic interaction: in the context of mechanism-based classifications, an interaction (or component of one) that does not 

involve exchange of energy (biomass) between the two interacting individuals.
Single-interaction network: ecological network in which one interaction type is considered. Classic examples are food webs or plant-

pollinator networks.
Multiple interactions network: ecological network with more than one interaction type. This umbrella term includes any topology 

and/or classification of interactions.
Expanded food web: multiple interactions network in which consumer-resource interactions form the basic structure of the network. 

Other interactions are termed “non-trophic” interactions and may affect any parameter of the dynamic model.
Multilayer network: network with different types of connections between nodes. In an ecological context, different network layers 

commonly represent different interaction types. If there is only one layering aspect and nodes are diagonally-coupled, that type of 
multilayer network is termed multiplex.

Equal footing network: multiple interactions network in which all interaction types are expressed in the same units, i.e. influence the 
same parameter of the dynamic model.
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Equal footing networks

Regardless of the specific characteristics or vital rates of an 
organism potentially modified by a pairwise interaction, its 
effects can be summed up as influencing either 1) individual 
fitness, 2) population size, or 3) population growth rate 
(Abrams 1987). This view of interactions as aggregating 
effects over general individual or population-level parame-
ters is the conceptual basis behind ‘equal footing networks’, 
with the main consequence that pairwise interactions of any 
type can be measured and compared ‘on equal footing’.

A minimal population dynamics model can be represented 
as in Eq. 1. The main difference with the expanded food webs 
is that here, trophic and non-trophic interactions influence 
the intrinsic growth rate through the interaction terms of the 
adjacency matrix [axy], instead of being modelled through 
auxiliary Eq. 2‒3. Therefore, the adjacency matrix may 
include all pairwise combinations {(0,0), (0,),(0,‒),(,‒)
,(,),(‒,‒)} (Supplementary material Appendix 1 Fig. A5).

Being a more general approach than expanded food 
webs, numerical models of equal footing networks are more 
scalable. Following Eq. 1, each species can be modelled by a 
single equation, and S2  S parameters are required for a com-
plete model of S species. This generality through the integra-
tion of fundamentally different interaction mechanisms in 
the adjacency matrix hinders the level of biological realism 
that can be achieved, in contrast with expanded food webs. 
By manipulating the signs of the adjacency matrix, different 
proportions of interaction types can be generated, but the 
effect of varying these proportions on community stability is 
an open question. Mougi and Kondoh (2012) showed that, 
under certain conditions, local stability is enhanced for theo-
retical communities mixing antagonism and mutualism, as 
opposed to communities with a single interaction type. Their 
a priori conditions were that 1) mutualisms and antagonisms 
have, in total, the same effect over population growth rates 
and 2) for any species, the net effect of a given interaction 
decreases with increasing numbers of links of the same type. 
Two subsequent studies debated their conclusions: Suweis 
et al. (2014) stated that these conditions, and not the mix-
ing of interaction types, were the factors that stabilized their 
models, whereas Kondoh and Mougi (2015) partially relaxed 
their initial assumptions and still found increasing stability 
with interaction mixing. Recently, the methodology devel-
oped in Mougi and Kondoh (2012) has been expanded to 
assess the role of commensalism and amensalism (Mougi 
2016a) and the potential switching of interactions (Mougi 
2016b), finding that separately accounting for these factors 
(unidirectional interactions and interaction switching) 
also increases local stability. The evaluation of equal foot-
ing networks through local stability analyses (reviewed in  
Table 1) is methodologically equivalent to the analysis of sin-
gle-interaction networks. Hence, it is a natural approach for 
comparing networks of single and multiple interaction types 
without resorting to specific interaction mechanisms. In the 
studies already published (Table 1), different studies have 
considered different sets of interaction types and modelling 

assumptions, so that no integrative conclusions can be 
obtained at this point. Nevertheless, an emerging trend seems 
to be that networks with more than one interaction type and 
where different interactions are structured non-randomly 
are more locally stable than their single-interaction, non-
structured counterparts.

The equal footing framework can be thought of as a par-
ticular type of multilayer network, in which the interaction 
layers are ‘flattened’ in a single network, so that inter-layer 
links disappear, and each node is simultaneously affected 
by all interactions. This flattening is possible when three 
conditions are met: state nodes of the same node in the 
different layers of a multilayer network represent the same 
physical entity (as opposed to transportation networks, for 
example, where state nodes might represent bus or train sta-
tions of the same city), layers are diagonally-coupled, and 
all interactions in the different layers are expressed in the 
same units. This last condition is probably the most general, 
and in fact it represents our second criterion for distinguish-
ing among frameworks. It allows the possibility of flattening 
multilayer networks in which there is link overlap among 
layers, as the overall effect will be a function of all layer-
specific effects. We believe that these restrictive conditions, 
and the prevalence of equal footing networks in the theoret-
ical studies listed in Table 1, merit the consideration of this 
framework as separated from the more general multilayer 
networks. The study by Melián et  al. (2009) provides an 
example of a multilayer dataset flattened to an equal footing 
dynamic model.

Acquisition and aggregation of empirical data

Collecting data on the presence and strength of pairwise 
interactions in nature is notoriously difficult, even for the 
most easily observed interactions (Jordano 2016). It follows 
that interaction networks tend to be markedly under-
sampled (Chacoff et  al. 2012), and the proportion of type 
II errors, i.e. existing interactions that are not observed, is 
rarely known (Olesen et  al. 2011, Morales-Castilla et  al. 
2015, Gravel et al. 2016). In turn, quantifying the strength 
of observed interactions is also a long-standing challenge 
even for single interaction networks (Berlow et  al. 2004). 
Several interaction strength indices have been developed by 
theoretical ecologists, but these are usually disconnected from 
the set of metrics obtained in field or manipulative studies  
(Wootton and Emmerson 2005). Furthermore, very few 
pairwise interaction types have been extensively studied and 
their functional forms analysed (Holland et al. 2002, Novak 
and Wootton 2008), while the existence and/or dynamics of 
the vast majority of interactions in nature remain unknown. 
Thus, designing and implementing programs for collecting 
reliable data on multiple interaction types is presently one 
of the biggest challenges for community ecologists, up to the 
point that we are aware of just a handful of prominent exam-
ples in the literature. For example, Melián et al. (2009) aggre-
gated data from several studies on pollination, seed dispersal 
and herbivory carried out between 1981‒1984 in the Doñana 
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Biological Reserve, in southern Spain. With that data, they 
constructed a network of 390 species and 798 interactions. 
Parasitic species and links, in addition to predator‒prey inter-
actions, were sampled by Hechinger et al. (2011) in food webs 
of three estuaries in the North American Pacific coast, in a 
dataset that included 314 species and 11270 interactions. In 
the study by Pocock et  al. (2012), several interaction types 
were concurrently sampled in different habitats of an agro-
ecosystem in the UK, obtaining a network of 560 species and 
1501 interactions. Finally, two networks of intertidal com-
munities have been collected recently: Sander et  al. (2015) 
obtained 1898 interactions between 110 taxa from the inter-
tidal middle zone of Tatoosh Island based on observations 
and natural history of the species, and Kéfi et  al. (2015) 
took advantage of decades of work conducted on the marine 
rocky intertidal communities of the central Chilean coast to 
reconstruct its qualitative community network based on field 
observations and expert knowledge. Their network includes 
104 species and 4754 interactions.

From these examples, one can distinguish two main 
strategies for constructing empirical multiple interactions 
networks: aggregating data from different sources of a given 
community in order to reconstruct the community network a 
posteriori (as in Melián et al. 2009, Hechinger et al. 2011, Kéfi 
et al. 2015 and Sander et al. 2015), or designing an integrated 
sampling program for a given set of previously defined 
interaction types, thus obtaining a realization of the network 
where all interactions are mostly co-occurring in space and 
time (as in Pocock et al. 2012). In the first approach, one may 
assemble information from studies conducted with different 
objectives and sampling methodologies and over different 
time periods, so that the aggregated network can potentially 
include a large fraction of the realized interactions, but these 
may or may not co-occur in time and/or space. Differen-
tial sampling efforts across studies will be unavoidable, and 
a posteriori analyses should be considered to minimize over 
or under-representation of certain clades and interactions. In 
the second approach, as fieldwork is likely to be conducted in 
tight time periods and in parallel for the different interaction 

types, sampling will potentially be more limited. On the 
other hand, this concurrent sampling is a more realistic snap-
shot of the co-occurring interactions in the sampling period, 
and importantly, fieldwork can be designed a priori to assign 
a near-homogeneous effort to different interaction types (but 
a posteriori corrections such as sample-based rarefaction are 
also advised; Pocock et al. 2012). A non-exhaustive list of fac-
tors to account for the design of field campaigns is provided 
in Table 2, but a more comprehensive analysis of sampling 
strategies for multiple interactions networks is needed.

Regarding the key issue of estimating empirical interac-
tion strengths, it is often necessary to conduct manipula-
tive experiments for obtaining reliable functional forms and 
interaction strength coefficients. Such experiments, however, 
are very context and clade-specific, and usually pose increased 
costs and logistical difficulties over field observations. For 
these reasons, a growing line of research is being devel-
oped for, given minimal information, inferring the presence 
(Morales-Castilla et al. 2015, Deyle et al. 2016) and strength 
(Novak and Wootton 2008, Berlow et  al. 2009, Vázquez 
et al. 2012) of biotic interactions. Specifically, an interaction 
strength proxy that may be applicable to different types of 
interactions is the frequency of occurrence of an interaction. 
Poisot et al. (2015) proposed a general framework for inte-
grating dynamic interaction strengths in dynamical models, 
taking into account the long-held idea that the net impact of 
a species over another can be described as a function of two 
components: the frequency of interaction and the per interac-
tion effect (Vázquez et al. 2005). Thereby, the relative role of 
density-mediated and trait-mediated effects on direct inter-
actions can be explicitly analysed. So far, it has been hypoth-
esized that the net impact of mutualistic plant–pollinator 
interactions can be approximated by their frequency for both 
sides of the interaction (Vázquez et al. 2005, 2012) and, in 
addition, that the asymmetry among interaction strengths is 
well explained in some cases solely by species’ relative abun-
dances (for quantitative bipartite networks, Vázquez et  al. 
2007). These ideas converge towards a unified neutral view 
of ecological interactions: interactions can be approximated 

Table 2. List of factors to consider in the design of sampling campaigns for multiple interaction types. These factors are general and indepen-
dent from the framework chosen to represent the obtained network.

Factor Examples of relevant questions

Temporal scale Single sampling campaign or periodic samples? What is the time scale of the interactions to be 
sampled? Are all/certain interaction types expected to vary along the sampling period?

Spatial scale What is the spatial scale of the interactions to be sampled? Are all/certain interaction types 
expected to vary spatially?

Habitat type(s) How many habitat types will be sampled? How does sampling effort vary across habitats? Which 
interaction types are expected to be prevalent in each habitat type?

Interaction types Which interaction types are expected to be sampled? Which sampling methodologies are applied 
to capture them? How does the proportion of forbidden links vary among interaction types?

Field and experimental observations Are experimental observations needed for observing specific interaction types (e.g. for estimating 
the prevalence of parasitism, or the number of flowers visited by a given pollinator)? How is 
effort distributed among field and experimental observations?

Natural history of species Do species in the community have varying activity periods or phenologies? Are there significant 
differences in mobility, behaviour, and other traits relevant to the probability of observing an 
interaction?

Movement capacity Will network include permanent species or also transient ones? How is a permanent species 
defined?
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as being the result of random encounters among individu-
als, whose probability is mediated by the relative abundances 
of the populations involved (Araújo and Rozenfeld 2014, 
Canard et  al. 2012, 2014, Cazelles et  al. 2015). The fre-
quency of interactions will naturally equal the net impact of a 
population over another, since per capita interaction strength 
will not vary with other factors (traits, environmental condi-
tions). Further research is needed to test the robustness of 1) 
species abundance as a proxy for interaction frequency, and 
2) interaction frequency as a proxy for interaction strength.

The Aire Island case study

The expanded food web, multilayer and equal footing frame-
works for building multiple interactions networks offer 
complementary insights for the study of ecological commu-
nities, and each one is best suited to different types of studies 
and objectives (Box 1). Here, to demonstrate the diversity 
of ecological questions that can be addressed with multiple 
interactions networks, we analyse an empirical community 
under the lenses of each one of the approaches described. 
Specifically, we ask:
a)	 what is the influence of non-trophic interactions on the local 

abundances of all species? (expanded food web approach);
b)	 which species serve as ‘hubs’ for linking species through 

interaction sub-networks and in the overall network? 
(multilayer network approach);

c)	 does the strength of different interaction types influences 
local community stability? (equal footing approach).

The community examined is located on the Aire Island, a 
small islet located southeast off the coast of Menorca (Bale-
aric Islands, Spain) with an area of around 342  500  m². 
Almost the entire surface of this relatively flat islet is exposed 
to the effect of the sea. Therefore, most vegetation is halophi-
lous (i.e. thrives in saline environments) except in areas shel-
tered from wind and sea, where typical Mediterranean species 
appear, such as Pistacia lentiscus (Pérez-Mellado et al. 2006). 
Our examples are based on a subset of the ecological com-
munity of this islet.

A remarkable set of interactions has been unveiled in 
the Aire Island between the dead horse arum Helicodiceros 
muscivorus, its associated insect pollinators (Diptera, genus 
Calliphora and Lucilia), and the Balearic lizard Podarcis lil-
fordi. The Balearic lizard is an omnivorous lacertid of medium 
size, endemic to the Balearic Islands. It has been shown to 
bask on the spathe of Helicodiceros muscivorus’ flowers, and 
to feed on the pollinating flies attracted by the intense odour 
produced by the plant. In addition to this negative effect of 
P. lilfordi on H. muscivorus through consumption of potential 
pollinators, it is itself an effective seed disperser of the plant: 
P. lilfordi consumes ripe fruits of H. muscivorus routinely, 
and seeds dispersed by the lizard show a significantly higher 
probability of germination than non-consumed seeds (Pérez-
Mellado et al. 2006). Podarcis lilfordi is also an effective pol-
linator of other species at Aire Island. Particularly, high loads 
of pollen from Pistacia lentiscus and Crithmum maritimum 
have been found in lizard’s bodies in previous studies on the 

same community (Pérez-Mellado et  al. 2000). Due to the 
scarcity of natural predators, P. lilfordi reaches high densi-
ties in the islet (Pérez-Mellado et al. 2008). Its main preda-
tor is probably the Eurasian kestrel Falco tinnunculus, that 
does not nest on the islet but visits it frequently. Lastly, the 
appearance of H. muscivorus is related to the percentage of 
soil covered by Suaeda vera, an halophilous shrub of the 
Chenopodiaceae family, suggesting facilitation by the shrub 
on the development of H. muscivorus (Pérez-Mellado et  al. 
2006). The interaction network formed by these seven species 
(or guild, in the case of the Diptera) spans three trophic levels, 
and includes antagonistic, mutualistic and commensalistic 
interactions. In the following equations and figures, S refers 
to the whole set of species, and species are denoted by their 
initials or silhouettes. When available, we use empirical data 
for parameter estimates. Whenever empirically derived esti-
mates are unavailable, as these examples are only to illustrate 
the approaches, we assign values based on our judgements of 
plausibility.

Expanded food webs: influence of non-trophic 
interactions in equilibrium abundances

The main strength of the expanded food webs is the inclu-
sion of detailed, mechanistic, non-trophic interactions in 
the general food web structure. We investigated their influ-
ence in the resulting abundance patterns of the community, 
compared to a standard food web model.

The continuous-time model for the expanded food web 
considers only three ecological processes: growth, mortality, 
and pairwise interactions, which can be trophic or non-trophic. 
Trophic interactions can, themselves, be modified by the pres-
ence of a third species. The main equations are of the form:
dN
dt

r N m N a N Nx
x x x x xy x yy S y x

= − +
∈ ≠∑2

,
	 (6)

where rx is the short-term per capita growth rate, mx is the per 
capita mortality rate (that, multiplied by N x

2 , acts as a self-
limitation term) and axy are the pairwise trophic interaction 
coefficients (the partial derivative of the per capita growth 
rate of species x with respect to the density of species y).

Several non-trophic interactions are included on top 
of this general structure, affecting either rx,mx or axy. As an 
example, the modification of the mortality rate is modelled 
with a saturating function (Kéfi et al. 2012):

m N
m N m N

N Nx y
x
NTI

y x y

y y

( ) =
+

+

0 0

0 	 (7)

The function varies between a basal value mx
0  when Ny  0, 

i.e. in the absence of non-trophic interactions, and mx
NTI  

when the non-trophic interaction is highest. The same equa-
tion was used to model non-trophic interactions influencing 
the other parameters of Eq. 6 (growth rates rx and interaction 
coefficients axy). For modelling the Aire Island community, we 
assumed that 1) all mutualistic interactions positively affect 
short-term growth rates, i.e. r rx

NTI
x> 0  for H. muscivorus,  

P. lilfordi, Diptera, P. lentiscus and C. maritimum; 2) the 
presence of S. vera increases the survival probability of  
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H. muscivorus seedlings by providing a favourable micro-
habitat, thus decreasing the mortality rate of the facilitated 
plant, i.e. m mHM

NTI
HM< 0 ; and 3) increases in abundance of 

H. muscivorus increased the magnitude of the predator‒prey 
interaction between P. lilfordi and the Diptera species, i.e. 
a aPL DP

NTI
PL DP, ,> 0  and a aDP PL

NTI
DP PL, ,< 0 .

The complete parameterizations of the expanded food 
web model and the equal footing model are included in 
Supplementary material Appendix 1. We found significant 
differences in abundances at equilibrium for all species except 
S. vera, depending on the set of interactions considered (Fig. 
2). We define equilibrium as the steady state reached after 
a sufficient number of time steps (2500 in our case). Non-
trophic interactions in the Aire Island community are all 
positive, and accordingly, all populations increase in equilib-
rium abundance when engaging in non-trophic interactions. 
The only organism that conceivably could be negatively 
affected by the inclusion of non-trophic interactions are 
the Diptera, given that the magnitude of the P. lilfordi ‒ 
Diptera antagonism is enhanced by higher abundance of  
H. muscivorus. With the parameterization chosen, however, 
the positive influence of the Diptera – H. muscivorus mutu-
alism outweighs this increase (Fig. 2, note the increase in 
Diptera abundance when non-trophic interactions are con-
sidered). Note that this is the only approach in which we 
explicitly model the influence of H. muscivorus populations 
in the predator‒prey interaction between the Diptera species 
and P. lilfordi.

Multilayer networks: importance of each species in 
structuring the network

The role of the different species in structuring a given com-
munity has been extensively assessed for single-interaction 
networks (Coux et al. 2016) and for multilayer networks in 
other fields (Solé-Ribalta et  al. 2014, De Domenico et  al. 

2015). For the multilayer framework, several metrics have 
been adapted directly from single-interaction networks and 
others have been defined taking into account the multidi-
mensional nature of the multilayer approach (De Domenico 
et al. 2015). Among these novel metrics, the concept of ‘mul-
tidegree’ is a multidimensional extension of the degree of a 
single-interaction network, that may help uncover important, 
well-connected species in each sub-network and in the overall 
structure. Here we calculate multidegrees as defined in Boc-
caletti et al. (2014), where formal definitions are provided.

For understanding the concept of multidegrees, we first 
need to define the ‘multilinks’ of the network. Multilinks (or 
multiedges) are links connecting two nodes in a combination 
of layers. For example, the Aire Island network has three inter-
action types. A multilink of the form (1,0,0) exists between 
two species if these species are connected in the first layer 
and not in the second or third one. One can see thus that 
the number of potential multilinks between any two species 
in a general network with M layers is 2M. The multidegrees 
mx

i  of species i are its number of multilinks of type x, and its 
aggregation, mi, is the overall multidegree as considered e.g. 
in Stella et al. (2016).

Given three layers representing interaction types {antag-
onism, commensalism, mutualism}, the multilinks for the 
Aire Island network are:
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Figure 2. Equilibrium abundances of the Aire Island community when considering trophic interactions, or trophic and non-trophic ones. 
Boxplots with different letters are significantly different according to Wilcoxon rank-sum tests (CM: W  38176000, p  0.05; DP: 
W  63730000, p  0.05; FT: W  38512000, p  0.05; HM: W  57170000, p  0.05; PL: W  42005000, p  0.05; PLe: 
W  38454000, p  0.05; SV: W  31595000, p  0.059).



18

where m0 is the null multilink, representing the situation in 
which two species are not connected in any layer, and sub-
sequently, m7 represents a multilink whereby two species are 
connected in the three layers. The number of shared multi-
links between any two species can be represented by ‘multi-
adjacency matrices’. The multi-adjacency matrices of the Aire 
Island community are:

A

FT PL DP HM SV PLe CM

m0

0 0 1 1 1 1 1
0 0 0 0 1 0 0
1 0 0 0 1 1 1
1 0 0 0 0 1 1
1 1 1 0 0 1 1
1 0 1 1
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1 0 1 1 1 1 0
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A
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 1 0 0 0
0 0 0 0

=

00 0 0
0 0 0 0 0 0 0

FT
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A
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m4

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 0

=

00 0 0
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CM

A A A Am m m m3 5 6 7 0= = = =

The multidegrees of the seven species of the community are 
the number of multilinks incident to them (Table 3). These 

metrics show that P. lilfordi is the most connected species, 
overall and both in the mutualist and antagonist sub-net-
works. H. muscivorus and Diptera are the following species 
in multidegree, and their links also span two layers. All other 
species are represented only in one layer, and are only con-
nected to P. lilfordi, inviting the interpretation that the Bale-
aric lizard has a disproportionate importance in structuring 
the community. In our small community, these results are 
visually evident, but the multidegree concept can be very 
useful in highly populated networks, where the importance 
of different species across layers is not obvious from visual 
inspection of the data. Note that by decomposing the over-
all multidegree into the contributions of each multilink we 
are able to evaluate the potential link overlap of any pair of 
species in any combination of layers. In our simple example, 
however, there is no overlap, a reasonable assumption when 
considering an effect-based classification of interactions over 
a single population parameter, since the potential partial pos-
itive and negative effects of a species over another are aggre-
gated in order to calculate the net effect and the associated 
interaction type. For example, looking again at the Podarcis 
– Helicodiceros interaction, the net direct effect of the lizard 
over the plant could be decomposed in, at least, 1) a negative 
effect due to the consumption of fruits (i.e. the trophic part 
of the pairwise interaction), 2) another negative effect due to 
the predation of potential Diptera pollinators, 3) the posi-
tive effect on seed dispersal, and 4) a further positive effect 
on survival of seeds that have been dispersed by P. lilfordi as 
opposed to seeds that germinate naturally. In the absence of 
more detailed experiments, and as suggested by Pérez-Mel-
lado et al. (2006), we considered the overall effect of P. lilfordi 
over H. muscivorus to be positive. Link overlap in interactions 
can be expected when two species interact in different ways, 
for example due to varying ecologies of life stages, and more 
generally when the temporal dimension is included in the 
analyses.

Equal footing networks: influence of the magnitude of 
mutualistic and antagonistic interactions on community 
stability

For assessing the effect of the strength of different interac-
tion types on the overall stability of the network, we mod-
elled the community using the equal footing framework. We  
used the continuous-time logistic equations proposed by 

Table 3. Multidegrees of the seven species of the Aire Island multi-
layer network. Note that the trivial m0 multilink represents no 
connections, so it is not considered for calculating the overall 
multidegree m.

m0 m1 m2 m3 m4 m5 m6 m7 m

Falco tinnunculus 5 0 0 0 1 0 0 0 1
Podarcis lilfordi 1 3 0 0 2 0 0 0 5
Diptera 4 1 0 0 1 0 0 0 2
Helicodiceros muscivorus 3 2 1 0 0 0 0 0 3
Suaeda vera 5 0 1 0 0 0 0 0 1
Pistacia lentiscus 5 1 0 0 0 0 0 0 1
Crithmum maritimum 5 1 0 0 0 0 0 0 1
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García-Algarra et  al. (2014), in which all extrinsic effects 
– environmental, biotic interactions – fall on the intrinsic 
growth rate rx:
dN
dt

r Nx
x x= 	 (8)

where

r r a N c a N Nx x xy y x xy S y x xy y xy S y x
= + − +

∈ ≠ ∈ ≠∑ ∑0 ( )
, ,

b 	 (9)

The rightmost term of Eq. 9 represents the self-limitation 
term. In the absence of pairwise interactions, the param-
eter bx controls self-limitation, and cx is a proportionality 
constant. Pairwise interaction coefficients axy were assumed 
constant. For assessing the relative influence of different 
interaction types on community stability, we varied the rela-
tive magnitude of facilitative (commensalistic and mutual-
istic interactions) and antagonistic coefficients and analysed 
the resulting local stability patterns of the system by exam-
ining the sign of the leading eigenvalue of the associated 
Jacobian matrix (Fig. 3, Supplementary material Appendix 1  
Fig. A7).

Parameterizations with weak antagonistic interactions 
were virtually all stable (19 991 out of 20 000 replicates), 
regardless of the magnitude of facilitative interaction strength 
(Fig. 3, group a and b). Communities parameterized with 
strong antagonistic interactions (group c in Fig. 3), on 
the other hand, were mostly unstable, with only 20 out of  
10 000 replicates having a leading eigenvalue  0. All unsta-
ble communities were also unfeasible in that either key spe-
cies went extinct or some species grew unbounded despite the 
self-limitation term of Eq. 9. Interaction strength magnitudes 
were chosen arbitrarily, in the absence of empirical data, but 
patterns were robust to variations of  2 orders of magnitude. 
Our results therefore suggest that increasing antagonist inter-
action strengths for this particular community would lead to 
instability. Bear in mind, though, that local stability analy-
ses are only an approximation of ecological stability, as they 
only apply to closed systems in equilibrium. If accepting this 
assumption, local instability in the Aire Island community 
could be interpreted as being triggered by increased per cap-
ita antagonistic interaction strengths. These could appear, for 
example, if sexual dimorphism in P. lilfordi led to higher pre-
dation of females by birds, thus exerting a higher influence on 
population growth rate. This, however, does not seem to be 
case, since the only dimorphism reported in Aire Island is the 
slightly larger body size of males (Pérez-Mellado et al. 2000); 
hence, no differential predation is expected.

Lessons from the case study

In the Aire Island, the ecological community studied is struc-
tured around P. lilfordi, due to its high density and its key role 
as omnivorous feeder as well as seed disperser and pollinator 
of several plant species. This species and H. muscivorus are the 
ones most connected in the network, as shown by the multi-
degree analysis. Non-trophic interactions are key for correctly 
projecting population abundances, supporting empirical 

observations of the importance of facilitation between plant 
species (Pérez-Mellado et al. 2006) and effective seed disper-
sal by P. lilfordi (Pérez-Mellado et al. 2000). We posit that the 
role of non-trophic interactions, as modelled in the expanded 
food web approach, will vary among communities and stud-
ies, but it is essential to integrate them in food web analyses, 
particularly for fine-scale and well-studied systems. Lastly, 
with the equal footing approach, we have shown that if we 
assume all interactions to influence intrinsic growth rates, the 
strength of antagonistic interactions controls the local sta-
bility of the network by potentially driving P. lilfordi or the 
Diptera pollinators to extinction. Specifically, even if no local 
extinctions occur, the variability on the Podarcis abundances 
driven by an increase in antagonistic interaction strengths 
can destabilize the community, due to its central position on 

Figure 3. Distribution of antagonistic and mutualistic interaction 
strengths and the leading eigenvalue of the resulting system. In the 
scatterplot, grey circles are systems with leading eigenvalue  0, and 
black circles are systems with leading eigenvalue  0. Group a) is 
the group of simulations with weak antagonistic and facilitative 
interactions; group b) are simulations with weak antagonistic and 
strong facilitative interactions; group c) are simulations with strong 
antagonistic and weak facilitative interactions. Within group c) 
only eigenvalue magnitudes close to 0 are shown, due to the extreme 
variability of the raw data (with values up to 1099). The rest of the 
data is shown in Supplementary material Appendix 1 Fig. A7. For 
reference, a grid is drawn representing the z  0 plane. Lower panels 
show the density distribution, for each group, of the logarithm of 
antagonist interaction strengths (solid lines) and the logarithm of 
facilitative interaction strengths (dashed lines).
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the network (as shown by the multidegree analysis). Positive 
interactions, in turn, can vary in magnitude without signifi-
cant effects on local stability.

The results shown here, however, are merely to exemplify 
the application of the three methodologies on different eco-
logical questions. Different methodologies evaluating the 
same problem may yield varying results; for example, equi-
librium abundances of stable simulations obtained with the 
equal footing approach (Supplementary material Appen-
dix 1 Fig. A6) vary significantly from those obtained with 
the expanded food webs (Fig. 2). Choosing an appropriate 
formulation is not an exact science, as it involves a balance 
between available spatio-temporal data on species and inter-
actions, natural history knowledge of the system, parsimony 
of the mathematical model, and objectives of the study (Box 
1). In this particular community, in which the number of 
species is limited and the main interactions and mechanisms 
are relatively well-known, we advocate for more in-depth 
analyses based on expanded food webs, that may be param-
eterized with the results of manipulative studies of, e.g. local-
ised removal of certain species or seed dispersal experiments 
for obtaining estimates of interaction strength.

Network ecology moving forward

Communities are comprised of individuals of differ-
ent species interacting dynamically, and the wide variety 
of interactions any species engages in is key to its survival 
and thriving. Incorporating the effects of multiple interac-
tion types in network analyses provides a more complete 
picture of community dynamics than relying on networks 
of a single interaction type. We have shown that frame-
works for the study of multiple interactions networks are 
sufficiently mature and can accommodate a wide variety of 
research objectives and types of empirical data. We hope that 
the improved understanding of these frameworks, and the 
explicit recognition of their relative limitations and advan-
tages, will lead to designing field studies that adequately cap-
ture the variety of interactions in communities, thus going 
beyond traditional approaches focusing on single interactions 
and often single clades. Questions in community ecology that 
remain unanswered can be addressed with a multiple interac-
tions networks approach to the analysis of ecological com-
munities. For example, we have little knowledge regarding 
the proportion among different types of interactions in real 
communities, whether this proportion is constant, whether 
it varies with any intrinsic or extrinsic factor, or whether it 
is related to community stability. Furthermore, it is unclear 
whether the trophic position of a species is related to the type 
of interactions it is more likely to be engaged in. Likewise, 
we have little knowledge of whether a species deemed impor-
tant in a given sub-network will generally have such a role in 
sub-networks of other interaction types. Because observation 
of interaction strength in natural systems is extremely dif-
ficult to document, integration of empirical data and model-
ling frameworks requires that consistent interaction strength 
proxies be designed and tested. The neutral interactions 

hypothesis is a promising starting point for providing a met-
ric applicable to all interaction types, but it needs to be tested 
for different communities and interaction types. On the 
other hand, the application of expanded food webs models to 
specific communities can trigger the design of manipulative 
studies to assess the functional forms and dynamics of non-
trophic interactions, most of which remain unknown despite 
their importance.

These and other related questions are fundamental in 
order to understand the response of ecological communities 
to perturbations such as climate change or habitat loss. In 
summary, the development of theoretical models, such as the 
ones presented here, needs to be contrasted with multiple 
field or experimental studies for different community types.

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.61f2h > (García-Callejas et  al. 
2017).

Acknowledgements – We thank Manlio De Domenico for insightful 
suggestions.
Funding – DG-C was funded by the Spanish Ministry of Education 
(FPU fellowship reference 2013/02147). MBA acknowledges sup-
port from AAG-MAA/3764/2014 and CGL2015-68438-P projects.

References

Abrams, P. A. 1987. On classifying interactions between populations. 
– Oecologia 73: 272–281.

Allesina, S. and Tang, S. 2012. Stability criteria for complex 
ecosystems. – Nature 483: 205–208.

Allesina, S. et al. 2015. Predicting the stability of large structured 
food webs. – Nat. Commun. 6: 7842.

Almaraz, P. and Oro, D. 2011. Size-mediated non-trophic interac-
tions and stochastic predation drive assembly and dynamics in 
a seabird community. – Ecology 92: 1948–1958.

Araújo, M. B. and Rozenfeld, A. 2014. The geographic scaling of 
biotic interactions. – Ecography 37: 406–415.

Arditi, R. et al. 2005. Rheagogies: modelling non-trophic effects in 
food webs. – Ecol. Complex. 2: 249–258.

Arthur, W. and Mitchell, P. 1989. A revised scheme for the classi-
fication of population interactions. – Oikos 56: 141–143.

Bachelot, B. et al. 2015. Interactions among mutualism, competition 
and predation foster species coexistence in diverse communi-
ties. – Theor. Ecol 8: 297–312

Bascompte, J. and Jordano, P. 2013. Mutualistic networks.  
– Princeton Univ. Press.

Bascompte, J. et al. 2006. Asymmetric co-evolutionary networks 
facilitate biodiversity maintenance. – Science 312: 431–433.

Bastolla, U. et al. 2009. The architecture of mutualistic networks 
minimizes competition and increases biodiversity. – Nature 
458: 1018–1020.

Berlow. E. L. et al. 2004. Interaction strengths in food webs: issues 
and opportunities. – J. Anim. Ecol. 73: 585–598

Berlow, E. L. et al. 2009. Simple prediction of interaction strengths 
in complex food webs. – Proc. Natl Acad. Sci. USA 106:  
187–191.



21

Boccaletti, S. et al. 2014. The structure and dynamics of multilayer 
networks. – Phys. Rep. 544: 1–122.

Canard, E. et al. 2012. Emergence of structural patterns in neutral 
trophic networks. – PLoS One 7: e38295.

Canard, E. et al. 2014. Empirical evaluation of neutral interactions 
in host–parasite networks. – Am. Nat. 183: 468–479.

Cazelles, K. et  al. 2015. A theory for species co-occurrence in 
interaction networks. – Theor. Ecol. 9: 39–48.

Chacoff, N. P. et  al. 2012. Evaluating sampling completeness  
in a desert plant–pollinator network. – J. Anim. Ecol. 81: 
190–200.

Connell, J. H. 1961. The influence of interspecific competition and 
other factors on the distribution of the barnacle Chthalamus 
stellatus. – Ecology 42: 710–723.

Coux, C. et  al. 2016. Linking species functional roles to their 
network roles. – Ecol. Lett. 19: 762–770.

Dáttilo, W. et  al. 2016. Unravelling Darwin’s entangled bank: 
architecture and robustness of mutualistic networks with 
multiple interaction types. – Proc. R. Soc. B 283: 20161564

De Domenico, M. et  al. 2015. Ranking in interconnected 
multilayer networks reveals versatile nodes. – Nat. Commun. 
6: 6868.

Deyle et al. 2016. Tracking and forecasting ecosystem interactions 
in real time. – Proc. R. Soc. B 283: 20152258.

Donadi, S. et  al. 2013. Non-trophic interactions control benthic 
producers on intertidal flats. – Ecosystems 16: 1325–1335.

Dorado, J. et  al. 2011. Rareness and specialization in plant–
pollinator networks. – Ecology 92: 19–25.

Evans, D. M. et al. 2013. The robustness of a network of ecological 
networks to habitat loss. – Ecol. Lett. 16: 844–852.

Fonseca, C. R. and Ganade, G. 1996. Asymmetries, compartments 
and null interactions in an Amazonian ant–plant community. 
– J. Anim. Ecol. 65: 339–347.

Fontaine, C. et al. 2011. The ecological and evolutionary implica-
tions of merging different types of networks. – Ecol. Lett. 14: 
1170–1181.

García-Algarra, J. et al. 2014. Rethinking the logistic approach for 
population dynamics of mutualistic interactions. – J. Theor. 
Biol. 363C: 332–343.

García-Callejas, D. et  al. 2017. Data from: Multiple interactions 
networks: towards more realistic descriptions of the web of life. 
– Dryad Digital Repository, < http://dx.doi.org/10.5061/
dryad.61f2h >.

Golubski, A. J. and Abrams, P. A. 2011. Modifying modifiers: what 
happens when interspecific interactions interact? – J. Anim. 
Ecol. 80: 1097–1108.

Golubski, A. J. et  al. 2016. Ecological networks over the edge: 
hypergraph trait-mediated indirect interaction (TMII) 
structure. – Trends Ecol. Evol. 31: 344–354.

Goudard, A. and Loreau, M. 2008. Nontrophic interactions, 
biodiversity and ecosystem functioning: an interaction web 
model. – Am. Nat. 171: 91–106.

Gracia-Lázaro, C. et al. 2017. The joint influence of competition 
and mutualism on the biodiversity of mutualistic ecosystems. 
– arXiv preprint arXiv:1703.06122v1 [physics.soc-ph]

Gravel. D. et  al. 2016. Bringing Elton and Grinnell together: a 
quantitative framework to represent the biogeography of 
ecological interaction networks. – bioRxiv 055558. < https://
doi.org/10.1101/055558 >.

Hechinger, R. F. et al. 2011. Food webs including parasites, biomass, 
body sizes and life stages for three California/Baja California 
estuaries. – Ecology 92: 791.

Holland, J. N. et  al. 2002. Population dynamics and mutualism: 
functional responses of benefits and costs. – Am. Nat. 159: 
231–244.

Johnson, S. et  al. 2014. Trophic coherence determines food-web 
stability. – Proc. Natl. Acad. Sci. USA 111: 17923–17928.

Jordano, P. 1987. Patterns of mutualistic interactions in pollination 
and seed dispersal: connectance, dependence asymmetries and 
coevolution. – Am. Nat. 129: 657–677.

Jordano, P. 2016. Sampling networks of ecological interactions.  
– Funct. Ecol. 30: 1883–1893.

Kéfi, S. et al. 2012. More than a meal… integrating non-feeding 
interactions into food webs. – Ecol. Lett. 15: 291–300.

Kéfi, S. et al. 2015. Network structure beyond food webs: mapping 
non-trophic and trophic interactions on Chilean rocky shores. 
– Ecology 96: 291–303.

Kéfi, S. et  al. 2016. How structured is the entangled bank? The 
surprisingly simple organization of multiplex ecological 
networks leads to increased persistence and resilience. – PloS 
Biol. 14: e1002527.

Kivelä, M. et al. 2014. Multilayer networks. – J. Complex Networks 
2: 203–271.

Kondoh, M. and Mougi, A. 2015. Interaction-type diversity hypo
thesis and interaction strength: the condition for the positive 
complexity–stability effect to arise. – Popul. Ecol. 51: 21–27.

Lafferty, K. et al. 2006. Parasites dominate food web links. – Proc. 
Natl. Acad. Sci. USA 133: 11211–11216.

Lafferty, K. et al. 2008. Parasites in food webs: the ultimate missing 
links. – Ecol. Lett. 11: 533–546.

Lee, C. T. 2015. Inherent demographic stability in mutualist-
resource–exploiter interactions. – Am. Nat. 185: 551–561.

Lever, J. J. et al. 2014. The sudden collapse of pollinator communi-
ties. – Ecol. Lett. 17: 350–359.

Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology.  
– Ecology 23: 399–417.

Lopezaraiza-Mikel, M. E. et al. 2007. The impact of an alien plant 
on a native plant–pollinator network: an experimental 
approach. – Ecol. Lett. 10: 539–550.

Lurgi, M. et al. 2016. The effects of space and diversity of interac-
tion types on the stability of complex ecological networks.  
– Theor. Ecol. 9: 3–13

Majdi, N. et al. 2014. Predator effects on a detritus-based food web 
are primarily mediated by non-trophic interactions. – J. Anim. 
Ecol. 83: 953–962.

May, R. M. 1972. Will a large complex system be stable? – Nature 
238: 413–414.

McCann, K. S. 2011. Food webs. – Princeton Univ. Press.
McCann, K. et al. 1998. Weak trophic interactions and the balance 

of nature. – Nature 395: 794–798.
Melián, C. J. et al. 2009. Diversity in a complex ecological network 

with two interaction types. – Oikos 118: 122–130.
Moore, J. C. and de Ruiter, P. C. 2012. Energetic food webs.  

– Oxford Univ. Press.
Morales-Castilla, I. et al. 2015. Inferring biotic interactions from 

proxies. – Trends Ecol. Evol. 30: 347–356.
Mougi, A. 2016a. The roles of amensalistic and commensalistic 

interactions in large ecological network stability. – Sci. Rep. 6: 
29929.

Mougi, A. 2016b. Stability of an adaptive hybrid community. – Sci. 
Rep. 6: 28181.

Mougi, A. and Kondoh, M. 2012. Diversity of interaction  
types and ecological community stability. – Science 337: 
349–51.



22

Mougi, A. and Kondoh, M. 2014. Stability of competition–
antagonism-mutualism hybrid community and the role of 
community network structure. – J. Theor. Biol. 360C: 54–58.

Novak, M. and Wootton, J. 2008. Estimating nonlinear interaction 
strengths: an observation-based method for species-rich food 
webs. – Ecology 89: 2083–2089

Olesen, J. M. et al. 2011. Missing and forbidden links in mutualistic 
networks. – Proc. R. Soc. B 278: 725–732

Paine, R. T. 1966. Food web complexity and species diversity.  
– Am. Nat. 100: 65–75.

Peacor, S. D. and Werner, E. E. 1997. Trait-mediated indirect inter-
actions in a simple aquatic food web. – Ecology 78: 1146–1156.

Pérez-Mellado, V. et  al. 2000. Pollen load and transport by the 
insular lizard, Podarcis lilfordi (Squamata, Lacertidae) in coastal 
islets of Menorca (Balearic Islands, Spain). – Isr. J. Zool. 46: 
193–200.

Pérez-Mellado, V. et al. 2006. A complex case of interaction between 
lizards and plants. The dead horse arum (Dracunculus 
muscivorus) and the Balearic lizard (Podarcis lilfordi). – In: 
Mainland and insular lacertid lizards, a mediterrean perspective. 
Firenze Univ. Press, pp. 133–160.

Pérez-Mellado, V. et al. 2008. Population density in Podarcis lilfordi 
(Squamata, Lacertidae), a lizard species endemic to small  
islets in the Balearic Islands (Spain). – Amphibia-Reptilia 29: 
49–60.

Pilosof, S. et al. 2017. The multilayer nature of ecological networks. 
– Nat. Ecol. Evol. 1: 0023.

Pimm, S. L. 1982. Food webs. – Springer.
Pocock, M. J. O. et al. 2012. The robustness and restoration of a 

network of ecological networks. – Science 335: 973–977.
Poisot, T. et  al. 2015. Beyond species: why ecological interaction 

networks vary through space and time. – Oikos 124: 243–251.
Prasad, R. P. and Snyder, W. E. 2010. A non-trophic interaction 

chain links predators in different spatial niches. – Oecologia 
162: 747–753.

Riede, J. O. et al. 2011. Size-based food web characteristics govern 
the response to species extinctions. – Basic Appl. Ecol. 12: 
581–589.

Rip, J. M. K. et al. 2010. An experimental test of a fundamental 
food web motif. – Proc. R. Soc. B 277: 1743–1749.

Rohr, R. P. et  al. 2014. On the structural stability of mutualistic 
systems. – Science 345: 1253497–9.

Saint-Béat, B. et al. 2015. Trophic networks: how do theories link 
ecosystem structure and functioning to stability properties? A 
review. – Ecol. Indic. 52: 458–471.

Sander, E. et  al. 2015. What can interaction webs tell us about 
species roles?. – PLoS Comput. Biol. 11:e1004330.

Sanders, D. et al. 2014. Integrating ecosystem engineering and food 
webs. – Oikos 123: 513–524.

Sauve, A. M. C. et  al. 2014. Structure–stability relationships in 
networks combining mutualistic and antagonistic interactions. 
– Oikos 123: 378–384.

Sauve, A. M. C. et al. 2016. How plants connect pollination and 
herbivory networks and their contribution to community 
stability. – Ecology 97: 908–917.

Schoener, T. W. 1983. Field experiments on interspecific 
competition. – Am. Nat. 122: 240–285.

Sellman, S. et  al. 2016. Pattern of functional extinctions in 
ecological networks with a variety of interaction types. – Theor. 
Ecol. 9: 83–94

Solé-Ribalta, A. et  al. 2014. Centrality rankings in multiplex 
networks. – Proc. 2014 ACM Conf. Web Sci. pp. 149–155.

Soliveres, S. et al. 2015. A missing link between facilitation and 
plant species coexistence: nurses benefit generally rare species 
more than common ones. – J. Ecol. 103: 1183–1189.

Sousa, W. P. 1993. Interspecific antagonism and species coexistence 
in a diverse guild of larval trematode parasites. – Ecol. Monogr. 
63: 103–128.

Stachowicz, J. J. 2001. Mutualism, facilitation and the structure  
of ecological communities. – Bioscience 51: 235–246.

Stella, M. et  al. 2016. Parasite spreading in spatial ecological 
multiplex networks. – J. Complex Networks : cnw028

Suweis, S. et al. 2014. Disentangling the effect of hybrid interactions 
and of the constant effort hypothesis on ecological community 
stability. – Oikos 123: 525–532.

Tang, S. et  al. 2014. Correlation between interaction strengths 
drives stability in large ecological networks. – Ecol. Lett. 17: 
1094–1100.

Thébault, E. and Fontaine, C. 2010. Stability of ecological 
communities and the architecture of mutualistic and trophic 
networks. – Science 329: 853–856.

Vázquez, D. P. et al. 2005. Interaction frequency as a surrogate for 
the total effect of animal mutualists on plants. – Ecol. Lett. 8: 
1088–1094.

Vázquez, D. P. et  al. 2007. Species abundance and asymmetric 
interaction strength in ecological networks. – Oikos 116: 
1120–1127.

Vázquez, D. P. et  al. 2012. The strength of plant–pollinator 
interactions. – Ecology 93: 719–725.

von Haeseler, A. 2012. Do we still need supertrees? – BMC Biol. 
10: 13.

Wootton, J. T. and Emmerson, M. 2005. Measurement of 
interaction strength in nature. – Annu. Rev. Ecol. Evol. Syst. 
36: 419–444.

Supplementary material (available online as Appendix oik-
04428 at < www.oikosjournal./appendix/oik-04428 >). 
Appendix 1–3.


