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Global warming is causing a major redistribution of life on 
earth1. Recent analyses have identified climate change as the 
seventh most dangerous threat to species on the International 

Union for Conservation of Nature (IUCN) Red List and it has been 
listed as a cause of threat for 19.4% of all species that are listed as 
near-threatened or threatened2. Another study has suggested that 
global warming could lead to extinction of as much as one in six 
of all known species3. Despite the plethora of existing forecasts, 
there is consensus that modelling of climate-change effects on 
large numbers of species distributions is difficult, because there are 
many uncertainties4 and factors acting in concert, several of which 
are unaccounted for in modelling methods5. Independent ground-
truthing of the models is also often impossible6 and it adds to the 
problem that forecasts are often based on models that examine cor-
relations between species distributional data and environmental 
data. As such, projections are highly contingent on the quality of the 
data and the models.

Species distribution data, in particular, can be problematic. For 
example, if species are absent from parts of their potential distribu-
tion potential owing to dispersal limitation or biotic interactions, 
such absence might lead to truncation of species–climate relation-
ships7, thus preventing models from accurately projecting climate-
change effects on their distributions8. Less frequently acknowledged, 
however, is that humans can also cause species to be absent from 
large portions of their distributions owing to human-induced 
local or regional extinctions9,10. Therefore, human modification of  
species distributions can lead to pronounced biases in forecasts of 
climate-change effects on biodiversity.

Comprehensive quantification of human impacts on species 
ranges is difficult to characterize, because humans have been modi-
fying natural ecosystems and species distributions almost world-
wide since modern Homo sapiens sapiens moved out of Africa in the 
Late Pleistocene epoch10, and potentially in Africa throughout the 
Pleistocene epoch11. However, anthropogenic post-Columbus range 
contractions are reasonably well-documented for many large mammals  

in North America9. The extent of historical human modification 
of species ranges is such that, on a global scale, current range sizes 
are better predicted by human population growth and popula-
tion density than by biological traits, such as diet or body size12.  
Similarly, the empirical distribution of body masses around the 
globe is closer to theoretical expectation when human effects on dis-
tributions are taken into account than when they are not13. Overall, 
evidence suggests that a large fraction of all species ranges have had 
their ranges reduced owing to human impacts10.

We investigated the consequences of anthropogenic range con-
tractions on our ability to estimate species niches and the effects 
of this on estimated new ranges under climate change using large 
mammals (> 1 kg) in North America. These animals are particu-
larly well-suited for such analyses, because most of their range 
declines are both recent and well-documented. We acknowledge 
that by using the pre-Columbus ranges as a baseline, we are almost 
certainly underestimating the magnitude of anthropogenic modi-
fications of the study animals for two reasons. First, the historical 
distributions of the extant mammals in North America that we anal-
yse were probably influenced by the extinctions of predators and 
competitors during the Late Pleistocene/Early Holocene megafauna 
extinctions, which were at least partially anthropogenic in nature 
(for example, see refs 14,15). Second, it seems unlikely that the region-
ally high population density in pre-Columbus North America did 
not influence species distributions for some of the larger mammals, 
especially given that some ancient Native American cultures report-
edly caused sufficient habitat degradation to cause their own col-
lapse16. Our main interest is to investigate the effects of input species 
distribution data on forecasts of global-warming effects on biodi-
versity and, more specifically, investigate potential improvements 
caused by the inclusion of historic occurences in such forecasts.

Climatic hind-casting
Models that were fit on the basis of only contemporary records per-
formed substantially worse than models that included historical 
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Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations 
of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current 
environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suit-
ability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such 
biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on 
current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, 
almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species 
is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be 
reliable without acknowledging anthropogenic influences on contemporary ranges.
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records in predicting fossil occurrences, highlighting that the con-
temporary records do not adequately capture species niches.

In our analysis, 36 of the 48 species had a sufficient number 
of fossil locations to analyse model performance for hind-casting 
and had significantly higher suitability in the fossil sites than in 
the pseudo-absence sites (Supplementary Table 1). Analyses of the 
results of model hind-casting was restricted to these 36 species.  
For 28 of these 36 species, the models based on historical records 
were better at predicting fossil occurrences than the ones that were 
based on contemporary records (the difference between the suitabil-
ity between fossil and non-fossil sites for the model based on histor-
ical records were higher than the differences for the models based 
on contemporary records) (Fig. 1; P =  6.0 ×  10−4, two-sided bino-
mial test). For 29 species, the models based on all records were bet-
ter than the models based on contemporary records (P =  3.1 ×  10−4, 
two-sided binomial test), and for 24 species, models that were based 
on all records, but sub-sampled to remove differences in sample 
size, were better than models for contemporary records (P =  0.065, 
two-sided binomial test).

There was only a small difference in the fit of the models based on 
current or historical records for species with the largest number of fos-
sils (Fig. 1). This is probably caused by a combination of two separate 
factors. First, species with the most records are very widespread and a 
larger fraction of the apparent absences in the fossil sites of these species 
may therefore be false negatives than in more range-restricted species. 
This makes comparisons between presences and pseudo-absences 
especially problematic for these species and could obscure any effect 
if it was present. Second, the species that are the most recorded are 
generally habitat generalists that may be rather resistant to antropo-
genic effects. In this regard, it is noteworthy that only one of the five 
most recorded species has a noticeable improvement in the fit based 
on historical records and the same species (Antilocapra americana)  

is the only one with evidence of largescale anthropogenic range con-
traction (ref. 10, Supplementary Table 1).

Climatic forecasting
Models based on contemporary records alone led to marked under-
estimations of future ranges, relative to models that included his-
torical records. When based on contemporary records alone, high 
overall climate suitability (the sum of suitability across all species, 
excluding suitabilities below 0.25) in 2070 was only predicted in a 
narrow coastal band in northwestern North America, whereas suit-
ability across species was predicted to be very low in particular in 
the more continental parts of North America (Fig. 2).

For models that include historical as well as contemporary 
records, the coastal band in northwestern North America is still 
predicted to be the one with the highest summed climate suitability 
across species but the overall gradient is much shallower and rela-
tively high suitability scores are also predicted in large areas in the 
southern United States and Mexico (Fig. 2). The difference between 
baseline predictions and future projections (2070), however, is less 
affected by species distributions data, because the reduction in pre-
dicted suitability is similar for both models (Fig. 2).

The reduction in future suitability for models based on con-
temporary records alone was also seen in the predictions for the 
individual species, suggesting that climate-change-related threats 
might be smaller than they appear based on contemporary records. 
Predicted range (the sum of the product of the suitability of each 
cell and the area of the cell within continental North America) was 
smaller for 37 out of 48 species when comparing models based on 
contemporary and historical records or contemporary records and 
all records (P =  2.2 ×  10−4, two-sided binomial test, the estimated 
suitable area for each species is shown in Supplementary Table 2). 
The difference was less pronounced when comparing the changes 
in predicted range between contemporary and 2070 climate for the 
different sets of input data, which may be because the ranges based 
on contemporary records were generally predicted to be smaller for 
both contemporary and 2070 climate estimates. The ratio between 
the 2070 and current predicted range (that is, the predicted relative 
decline) only showed larger declines (or smaller increases) for 28 
out of 48 species when comparing models for contemporary ver-
sus historical records (P =  0.3123, two-sided binomial test) or 31 
out of 48 when comparing contemporary records with all records 
(P =  0.059, two-sided binomial test).

The overall patterns were similar for all global-warming scenar-
ios, although the difference between the current and future diversity 
patterns were smaller based on the scenarios that assumed smaller 
amounts of global warming (Fig. 2, Supplementary Figs. 1–3).

Discussion
We demonstrate that the size of both future and contemporary suit-
able areas is underestimated and that models are worse at predicting 
fossil occurrences relative to models that include historical records. 
Therefore, predictions based only on contemporary records lead to 
biased results. Why do such biases arise? Model predictions gen-
erated strictly from historical records were generally similar to 
predictions generated with historical and contemporary records 
combined. By contrast, model predictions generated with the con-
temporary record were very different from predictions using all 
records combined. The differences between models using current or 
all records could potentially be attributed to sample size. However, 
such a proposition would fail to explain the similarity between 
results from historical and all records, and importantly it also fails to 
explain why we also observe better predictions for the occurrences 
of fossils based on historical records (a total of 34,689 records) 
relative to the models only using current records (a total of 45,518 
records). The differences are thus best assignable to human modifi-
cations of species realized niches. The problem that we identify here 
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Fig. 1 | improvement of fossil prediction for climatic hind-casting when 
incorporating historical records. For all species, the improvement in 
suitability was calculated for fossil sites relative to non-fossil sites. The  
y axis defines the difference in improvement for models based on historical 
and contemporary records. A positive value represents models based on 
historical records that perform better than models based on contemporary 
records when hind-casted to predict fossil occurrences. The x axis is 
the number of fossil occurrences for each species. A horizontal black 
line separates the 28 species for which the model based on historical 
records performed best from the 8 species for which the model based on 
contemporary records performed best. Points are coloured by taxonomic 
group (Carnivora in red, Artiodactyla in grey, and the rest in blue) to 
highlight that the pattern is general and not restricted to a particular 
taxonomic clade. Silhouettes reproduced with permission from Tracy A. 
Heath (bear and buffalo) and Sarah Werning (rabbit).
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could in principle be handled by comparing correlative models and 
mechanistic models such as those described in ref. 17, since the high 
similarity between the two sets of predictions would guarantee that 
humans have not caused a truncation of the niche. This approach 
would however not be able to distinguish niches that are truncated 
by humans from niches that are truncated by natural factors such as 
biotic interactions.

Our results suggest that global warming is a smaller problem 
for North American mammals than it initially appears, since the 
predicted future suitable areas were larger when incorporating his-
torical records for the vast majority of the species. While global 
warming undoubtedly is a major conservation problem and may 
cause a severe humanitarian crisis, our results suggest that some of 
the analyses estimating the proportion of species threatened by this 
factor (for example, refs 2,3) may overestimate the magnitude of the 
threat; at least if the results from North America can be extrapolated 
to other taxa and geographical areas. We cannot at present know the 
extent to which such extrapolation is justifiable. There is little reason 
to assume that the effect is restricted to North America (although 
we may lack the needed historical range data to show this for other 
continents), but different taxonomical groups may be influenced to 
different extents. Larger mammals, such as those on which we focus 
here, may require larger natural areas making biases even at coarse 
scales as those used here substantial. However, at least on a medium 
scale (with cell width of 2–8 km), it has recently been shown that 
markedly biased estimates of niches of common European trees 
were produced unless anthropogenic habitat modifications were 
incorporated into the models18.

A recent study19 has highlighted that a large fraction of the glob-
ally threatened mammals may already be influenced by global 
warming in parts of their range, which runs counter to our results 
and could suggest that many species may be more threatened than 
was initially apparent. We note, however, that the two studies focus 
on different time scales, because our analysis focusses on future 
threats whereas the previous study19 focussed on current trends. 
The combined take-away message from this paper and the previous 

study may therefore be that global warming analyses do not consis-
tently over or underestimate the consequences of climate change, 
but rather that we may frequently misidentify which species are 
threathened the most.

Our results are also important for designing networks of pro-
tected areas. Concerns have been raised about the ability of the cur-
rently protected areas to protect the worlds’ species under climate 
change20 and an early modelling study has explicitly addressed this 
issue for North American mammals21. However, these studies have 
not incorporated the anthropogenic modifications of ranges that we 
focus on here, and this incorporation may greatly increase the con-
servation value of several areas. In our study, this is, for example, 
the case for the southeastern United States, which saw a pronounced 
increase in overall suitability when historical records were included 
in the models (Fig. 2).

When trying to understand the regional change in conser-
vation value, we must highlight that we implicitly assume that 
human pressures on a given site will remain constant irrespec-
tive of climatic change. Geographical changes in human pressures 
will clearly be very important in some areas (for example, ref. 22), 
but we consider our assumption to be valid at least for a North 
American context. We do this because many types of human dis-
turbances, such as cities or roads, will probably not be moved 
in the future, unless climate change is really severe and because 
most remaining natural areas in North America are under envi-
ronmental protection, making future transformation unlikely 
irrespective of climatic changes.

We have interpreted our results in terms of anthropogenic 
modifications of species ranges, but we note that part of the 
results could also arise because the same locality sampled at dif-
ferent time periods represents different parts of the species envi-
ronmental niche. Even for species without changes in ranges, 
incorporation of historical records may therefore increase infor-
mation on the species niche and therefore the precision of the 
results. The importance of such temporal variation was recently 
highlighted in a study of temporal variation in estimated niches 
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of European and North American trees23, and we cannot rule out 
that this could explain part of the superiority of the models based 
on historical data in explaining fossil occurrences relative to 
models based on contemporary records. However, we note that it 
cannot create the large predicted differences in the consequences 
of global warming, as the models based on contemporary records 
are based on a warmer climate, which if anything should reduce 
the effects of global warming relative to the models based on the 
historical records from an, on average, colder climate.

Although our analysis shows that biased estimates of species dis-
tributional changes under climate change would be inferred when 
only the current ranges were used for the larger North American 
mammals, it could be argued that such an effect might be restricted 
to large vertebrates as they are among the organisms most influ-
enced by humans. The argument holds true for direct effects on 
species range, for example, through hunting10, but it may not neces-
sarily be true for secondary effects that are often mediated by the 
loss of biotic interactions with larger species. Substantial evidence 
(for example, refs 24–26) suggests that mammalian communities may 
be an important factor governing the overall vegetation structure. 
It therefore seems plausible that the misidentifications of future 
ranges that will arise for large mammals based on contemporary 
records, as we show here, could also lead to substantial errors for 
other groups due to the substantial ability of large mammals to 
modify their environment.

Analysis of species historical ranges showed that when major 
range contractions occurred, populations often persisted along the 
edges of species ranges27. These findings are noteworthy, because 
they contradict the longstanding view that species would tend to 
favourably persist near the core of their ranges28. However, one 
of the consequences of species persisting near range edges when 
exposed to massive range contractions is that assessments of cli-
mate niches based on extant distributions is likely to be truncated7, 
potentially leading to biases in model projections under climate 
change8. While studies involving hind-casting projections of spe-
cies distributions have often involved multiple historical datasets 
to reduce biases inherent to modelling ranges using temporal snap-
shots of data (for example, ref. 29), forecasting studies have rarely 
used historical sources of data to reduce the biases. One reason is 
that historical species range data are scarce and typically restricted 
to a few groups of organisms, such as mammals. An explicit incor-
poration of older records will, therefore, seldom be possible and 
researchers will often be forced to rely on contemporary records 
alone. If researchers are forced to rely on contemporary records 
as they often are, we suggest that they consider spatially explicit 
models, as these recently have been shown to be able to identify 
plausible areas in which absences are probably caused by anthro-
pogenic rather than climatic factors30. Unless alternative measures 
(such as the spatially explicit models) are adopted to reduce biases 
related to characterizations of species–climate relationships from 
highly modified ranges, models of global-change effects on species 
ranges will carry substantial biases as those that were found here 
for North American mammals.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41558-018-0089-x.
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Methods
Method summary. We analysed the climatic niches of 48 terrestrial North 
American mammals larger than 1 kg and including only the species with more 
than 10 reliable and spatially separated presence records (See ‘Recent and historical 
presence data’ and ‘Fossil presence data’). The requirement for spatially separated 
records was defined to reduce pseudo-replication owing to spatial autocorrelation. 
Specifically, we restricted the use of presence records to only those that were 
located more than 55 km apart. To assess the consequences of anthropogenic 
modifications of forecasts of climate-change effects on potential distributions of 
species, we generated three sets of models: with (1) historical presence records 
(non-fossil GBIF (Global Biodiversity Information Facility) records older than 
1965 (older than 50 years when we downloaded the records)); (2) contemporary 
presence records (from 1965 onwards); and (3) all records combined. To correct for 
differences in sample sizes between historical records and contemporary ones (the 
latter with more presence records available), we generated model runs after sub-
sampling the data to equalize the number of records used in both iterations.

For each species, we fit eight ecological niche models using Biomod231 based on 
the default parameters (see ‘Niche modelling’) and using four climatic predictors 
known to impose physiological constraints on species (maximum temperature, 
temperature seasonality, minimum precipitation and precipitation seasonality; see 
‘Extant environmental data’, ‘Fossil environmental data’ and ‘Future environmental 
data’). Once models were fit, the ensemble of projections from all eight models 
was combined into a weighted average consensus32 for each model according to 
the level of matching between predicted distributions and observed distributions 
in the test data using the ‘True Skill’ statistic33. We generated six separate sets of 
ensembles of models based on differences in pseudo-absence selection (different 
combinations of whether or not the pseudo-absences are randomly distributed 
in climate space or geographical space or cells in specific parts of the climate and 
or geographical space are more likely to be selected; see ‘Pseudo-absences’). We 
conducted a principal component analysis (PCA) on the difference in predicted 
suitability between contemporary and future climate based on each one of these six 
criteria and identified two clusters of models34. The first of the clusters contained 
results from four of the six pseudo-absence criteria and was grouped on the first 
axis of the PCA, thus accounting for the greatest proportion of the variation 
brought by pseudo-absence selection. We obtained consensuses for each cluster 
by un-weighted average. For all analyses, we only discuss the results from the first 
cluster, as the models it is consisted of account for the greatest proportion of the 
variance and hence represents the greatest consensus.

Once modelled climate suitability surfaces for species were generated, we 
conducted two sets of analyses. First, we projected climatic suitability into 2070 
and, for each cell, calculated the sum of the climatic suitability scores for all species 
both in the baseline and in 2070, excluding species with suitability scores below 
0.25, in order to estimate the effect size of ignoring historical records in global 
warming projections.

Second, we hind-casted projections to examine whether anthropogenic 
modifications of mammalian ranges decrease the ability of models to infer fossil 
occurrences (See ‘Predictions of fossil occurrences’). In other words, we tested for 
the effects of human modification of ranges in ecological niche model projections.

Input data. Recent and historical presence data. We modelled the distribution of all 
North American terrestrial mammals larger than 1 kg (based on weight data from 
ref. 35, with more than 10 separate reliable occurrences (records that remained after 
cleaning as discussed in detail below), and for which distributions do not extend 
to South America. Polar bears (Ursus maritimus) and sea otters (Enhydra lutris) 
were considered marine mammals and were therefore excluded from the analysis. 
Applying these criteria, we obtained 48 species (20 carnivores, 10 ungulates, 9 
rodents, 8hares and rabbits and 1 marsupial). We downloaded all of the available 
records for these species from the Global BioDiversity Information Facility (GBIF, 
www.gbif.org; downloaded 20 May 2015) and cleaned the distributional data.

We first removed any record with the ‘basisOfRecord’ (a column header 
in GBIF data) that was scored as fossil or unknown, and any record where 
both latitude and longitude were given without decimals. Second, we manually 
inspected the GBIF record (and the reference if given) for all recent records (1965 
or later) occurring outside the contemporary range as estimated by IUCN36, and 
all records occurring outside this current range or the historical range as estimated 
by in ref. 10 (which generally followed the ranges from the taxonomic treatment of 
all North American mammals37). Third, we deleted records if they corresponded 
to specimens noted as captive specimens, subfossil occurrences, or if they were 
from populations released outside their historically known range or if the locality 
given corresponds to known captive populations or non-native populations. The 
motivation for this third exclusion criterion was that we wanted to compare the 
patterns across species and, therefore, wanted to standardize the treatment of all 
species as much as possible, which is difficult if non-native ranges are included. 
Fourth, we deleted observations outside the historical ranges (for older records) 
or current range (for contemporary ones) if they were only based on indirect 
evidence, such as footprints, records outside the range for which coordinates 
matched museums in which collections are deposited as well as a few records so far 
outside the historical and or current range of the species that we judged that they 
probably represented errors.

For closely related allopatric species pairs or groups with current or historically 
debated taxonomy, such as the grey and red wolf (Canis lupus and Canis rufus), we 
preferred the polygons for the taxonomy and the GBIF data for date and location, 
for example, a hypothetical record of Canis lupus from Florida would be scored as 
a Canis rufus. A full list of all deviations from GBIF can be found in Supplementary 
Data 1. In addition, we deleted all occurrences outside continental North America 
(that is, from Greenland, Asia or Europe), because our analysis focuses on the 
consequences of anthropogenic range contractions and the differences in human 
history in these other areas would otherwise make it difficult to compare the 
pattern for North American endemics with species also that also occur outside 
North America.

To reduce spatial autocorrelation, we only used records of the species with a 
minimum distance of 55 km between them, which is equal to the distance between 
the midpoint of two adjoining cells with the same longitude using our resolution 
for climatic data of 0.5 by 0.5 degrees. We generated 50 such sets of record for each 
species by selecting records in random order until no records remained that were 
more than 55 km from all previously selected records.

Fossil presence data. In one set of analyses, we hind-casted species distribution 
models to compare known fossil or sub-fossil occurrences with predicted suitability 
of the species in question. For these, we downloaded and cleaned all records of 
sub-fossil or fossil mammals from the Neotoma database38 with a maximum age 
of 120,000 years or less. The taxonomy of this database was standardized to meet 
that of ref. 39, which follows IUCN for extant species. Such standardization is trivial 
when the taxonomy used by Neotoma recognizes more species than the one from 
ref. 39, as is the case for bison, for which we considered all extinct forms to be 
chronospecies of the extant Bison bison or for Martes nobilis, which we considered 
a synonym of Martes americana. It is more problematic when our taxonomy is 
recognizing taxa considered conspecific by Neotoma. The latter is, for example, 
the case for the red wolf C. rufus, which Neotoma consider a subspecies of Canis 
lupus. In this case, we could only assign fossils identified at subspecies level (as 
Canis lupus rufus) to Canis rufus. We assigned the remainder to Canis lupus, but 
we acknowledge that a small proportion of the records only identified to Canis 
lupus without subspecies designation may actually belong to Canis rufus instead. 
Records only identified to genus were included when we only accept one species 
to these genera (for example, records identified as Antilocapra sp.), however, these 
were excluded when they belong to genera with multiple species. We only analysed 
species with at least three fossil occurrences and therefore only used 42 out of 48 
species described here.

Extant environmental data. All environmental variables were estimated at a 
0.5-by-0.5-degree resolution. We chose to use four climatic parameters: maximum 
temperature (temperature of the warmest month); temperature seasonality (the 
difference between the temperature of the warmest and coldest month); minimum 
precipitation (precipitation of the driest month); and precipitation seasonality (the 
difference between the precipitation of the wettest and driest month). Note that 
the definitions of temperature seasonality and precipitation seasonality used here 
are different from the standard versions from BioClim, although they are directly 
calculable as the differences between standard BioClim variables.

The variables were chosen, because they were probably biologically 
meaningful, because they were only weakly correlated, and because they potentially 
represent environmental characteristics that limit distributions. Maximum 
temperature may directly limit the distribution of species as specific life history 
traits are needed for survival in warm habitats and temperature seasonality was 
selected as the temperature parameter with the lowest correlation to maximum 
temperature in North America (r2 =  0.21, compared to 0.38–0.87 for the other 
variables). Likewise, minimum precipitation may require unique adaptations 
and precipitation seasonality was selected as it has a much lower correlation to 
minimum precipitation than the remaining precipitation parameters (r2 =  0.03, 
compared to 0.34–0.99 between minimum precipitation and any of the standard 
BioClim parameters). The two precipitation parameters were log-transformed 
prior to analysis.

We calculated the environmental variables as the mean of a moving window of 
a 31-year period based on data from the Climate Research Unit40, which contains 
data from 1901–2013. That is, an occurrence from 1930 would be climatically 
related to the average of the period 1915–1945. Records for 2014 and 2015 (3,112 
out of a total of 97,102 records), and records from 1998–2013 (a total of 18,427 
records) were based on 1983–2013, whereas records older than 1900 (a total of 
1,197 records) and records between 1900 and 1915 (a total of records 3,007) were 
estimated based on the period 1901–1931. Records without known age (a total of 
16,895 records) were based on the average of the entire period (1901–1913), but 
these records were selected last and only used when their locality was more than 
55 km from dated records. For pseudo-absences (see below), climatic data were 
consistently used for the entire period (1901–2013).

Fossil environmental data. The climatic conditions for fossils were identified 
through a two-step procedure. First, we estimated the climate corresponding to 
each fossil site each year within the last 120,000 years based on loess regressions 
(conducted in R; www.r-project.org) using five time-point climatic simulations 
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(current climate, that is, average climate from 1901–2013; 6,000 years before 
present (bp, taken as before 1950)41, 21,000 years bp42, 30,000 years bp42, 42,000 
years bp42 and 120,000 years bp43) as well as age and δ 18O isotope data from the 
NGRIP1 core in Greenland (downloaded from the University of Copenhagen Data 
homepage44 and originating from multiple papers45–49). Second, we calculated the 
expected climatic conditions at the fossil site as the mean of the climatic conditions 
for each year between the minimum and maximum age of the fossil site. For 
maximum temperature and temperature seasonality, we took the mean, and for 
minimum precipitation and precipitation seasonality, we took the mean of the log-
transformed data rather than the logarithm to the mean. In addition, we calculated 
the sum of the standard deviation for maximum temperature and the standard 
deviation of temperature seasonality for the values for the fossil site, which we will 
refer to as the ‘dating-related uncertainty’.

The fossil sites generally contained fossil assemblages over a relatively long 
time period and occasionally over a wide array of climatic conditions. Some of 
the species may only have been present during a relatively small part of the period 
and our single measurement of the climatic conditions at each site may therefore 
not be representative of the conditions that they experienced and may not even be 
within the niche of the cell. This problem will be worse for sites with the largest 
dating-related uncertainty and would therefore be mitigated by removing these. 
In order to do this without removing many fossil sites unnecessarily, causing 
further problems related to small sample sizes, we identified the dating-related 
uncertainty maximizing (mean(suitability) – standard error(suitability)), when 
only calculated for samples with a dating-related uncertainty lower than that value. 
This optimization was carried out for models based on contemporary records, 
which may cause a small bias favouring the performance of models based on 
contemporary records relative to models based on historical records. Our aim  
is to estimate whether models based on historical records perform better than 
models based on contemporary ones and this therefore causes our analyses  
to be more conservative.

Future environmental data. Projections were based on four scenarios from the 
IPCC Intergovernmental Panel for Climate Change), the RCP2.6, 4.5, 6.0 and 8.5 
scenarios (according to ref. 50) downloaded from Worldclim41. In the main text, we 
focussed on the worst-case scenario (the RCP 8.5 scenario), corresponding to an 
average increase in annual temperature of 4.5 °C. There is little evidence for a sharp 
decline in fossil-fuel use, which would be needed for the less severe options, and 
this business-as-usual scenario may become increasingly more likely. In addition, 
we focussed on this scenario to estimate the realistically largest difference between 
current and projected climate.

Pseudo-absences. We generated pseudo-absences for each of the 50 sets of presence 
occurrences for each species. Since a large number of pseudo-absences often 
increase precision in models51, we used 10 times as many pseudo-absences as 
presences in our models for most species. We, however, used a lower number of 
pseudo-absences for some very widespread species and never selected more than 
half of all possible cells as pseudo-absences. In the cases in which we used less than 
10 times the number of presences as pseudo-absences we kept the ratio between 
the number of presences and pseudo-absences constant in the analysis of historical 
records, current records and all records (see below).

The selection of pseudo-absences for species distribution modelling is 
complicated, despite several studies having attempted to find the optimal method 
(for example, ref. 51). The problem is not made easier in our case, because we are 
attempting to model the consequences of the post-Columbus range contractions, 
but only have very few occurrences pre-1900 and none pre-1850, whereas we do 
have estimated range polygons at the arrival of Europeans in Northern America. 
We, therefore, analysed the data using several different methods for selecting 
pseudo-absences.

We note that analyses that exclude range polygons will underestimate the 
effects of range contractions, because large parts of the range contractions occurred 
prior to the generation of the museum records that we use for presences, whereas 
methods relying on range polygons have been criticized, because selecting pseudo-
absence points that are too dissimilar from presences results in models that  
over-predict the suitable area52. We chose to use six separate methods based on 
a set of 2 by 3 combinations of two climate selection criteria and three distance-
based criteria.

For climate-based criteria, the pseudo-absences were either (1) randomly 
generated or (2) derived using an approach in which less suitable cells are more 
likely to be selected as pseudo-absences. The likelihood of selecting each cell  
as a pseudo-absence was weighted using an exponential distribution P =  1 −  e−d, 
where d is the inverse of the Mahalanobis distance to the centroid of the presences, 
rescaled so P varies between 1 and 0.1.

For distance-based criteria, the pseudo-absences were categorized as either 
(1) cells without a presence record, (2) cells without any records or whose center 
was part of the range polygon (with the IUCN ranges used for current range 
and ranges from ref. 10 used for historical range and all occurrences), or (3) cells 
outside the ranges with the likelihood of selection being a function of the distance 
to the distribution of the species, so localities within dispersal distance of species 
but without species records are more likely to be selected. This was likewise 

done using an exponential distribution (P =  1− e− d), where d was the minimum 
geographical distance to the range polygon or record of the species. Again, d was 
rescaled so P varied between 1 and 0.1. For the analysis using both environmental 
and geographical weighting of pseudo-absences, the weighing was multiplied so 
a theoretical cell with a maximum geographical distance to records, but whose 
environment was exactly equal to the centroid of the presences, would only have a 
1% change of being selected relative to the most likely cell.

In order to recover the central tendency in the models based on the different 
criteria for pseudo-absences, we followed an approach similar to the one described 
previously34. We conducted a PCA of the difference between the average suitability 
for each species for all cells in continental North America (with the southern limit 
of the continent set at the Panama Canal) between current climate (the mean of 
the entire period from 1901–2013), and projected climate in 2070 (following the 
RCP8.5 scenario). There were two overall clusters from the six models (loading 
from the PCA can be seen in Supplementary Table 3). One cluster, hereafter 
referred to as the main cluster, contained four out of six models (the ones not 
allowing any pseudo-absence within the range polygon) and another contained  
the remaining two. Analyses were based on the unweighted average of the results 
for all criteria within a cluster. Only results based on the main cluster are  
shown in the main text and results based on the additional clusters are shown  
in the Supplementary Information (Supplementary Figs. 4–7, Supplementary 
Tables 4, 5). Model transferability is not necessarily a good predictor of model 
performance6. Consistent with previous tests and the analysis of consensus 
approaches34,53, we however find that models that grouped with the main  
cluster, that is, accounted for the greatest proportion of model variation,  
were substantially better at predicting fossil occurrences than the models  
in the secondary cluster.

Data analysis. Niche modelling. We aimed to compare the niche estimated from 
contemporary records alone (1965 or younger), historical records alone (non-fossil 
records older than 1965), and all records combined. In order to remove effects of 
sample size when comparing models, an additional set of analyses was conducted 
based on all records but subsampled to have the same number of presences as 
the contemporary dataset. For each species, for each type of pseudo-absence, for 
each of the 50 sets of presences and pseudo-absences, we fitted eight separate 
models using the default parameters in Biomod231 (three regression-based models 
(generalized linear models, generalized additive models and multivariate adaptive 
regression splines), four machine-learning methods (artificial neural networks, 
Breiman and Cutler’s random forest for classification, Classification tree Analysis 
and generalized boosting models) and a flexible discriminant analysis). Once fit,  
the resulting ensemble derived from all eight models was combined into a 
consensus projection with a ‘True Skill Statistic’33-weighted average. Following  
ref. 32, these initial models were estimated based on 75% of the data with the 
remaining 25% used to test the model, but, following refs 33,54,, the final predictions 
were based on 100% of the data.

Climate-change predictions. In order to determine the effects of input–response 
data on climate-change analyses, we focussed on the overall patterns for all 48 
species combined. For each cell, we calculated the sum of the suitabilites for all 
species in both the current and the 2070 climate, excluding species with suitabilities 
below 0.25.

Predictions of fossil occurrences. We also hind-casted the species distribution 
models and looked at the ability of models to predict fossil occurrence patterns. 
For this, models were assessed by examining the difference between the projected 
climate suitability within fossil sites where occurrences were found and random 
hypothetical fossil sites treated as pseudo-absences (only including fossil sites 
with lower climatic uncertainty due to uncertain dating than the species-specific 
threshold for accepting presences) (hereafter we refer to this difference as  
Δ Suitability). Our restriction of pseudo-absences is similar to the approach in  
ref. 55 and reduces false negatives, because it guarantees that fossilization is possible 
at all potential pseudo-absence sites. We estimated the statistical significance of the  
Δ Suitability values as the fraction of randomly sampled fossil sites having as large 
an average suitability as the average suitability of the true fossil occurrences.

For some of the species with the widest niche, such as grey wolves (C. lupus), 
only a small portion of the fossil sites may be outside the species niche and the 
frequency of false negatives may be very high. Δ Suitability values near zero for 
the most generalized species may therefore be non-informative, because of a large 
fraction of false absences. Likewise, Δ Suitability values near 0 may be essentially 
non-informative for species with a very low number of fossil records due to 
power issues. For comparisons of Δ Suitabilities between models constructed with 
different sets of records, we focussed on species that have a significant Δ Suitability 
based on all records on the basis of the main cluster of species distribution 
models (a total of 36 species). We report resulting values based on six additional 
species (which have at least three fossil records) in the Supplementary Tables 
(Supplementary Tables 1, 4).

Code availability. Computer code is available from the corresponding author  
upon request.
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Data availability. A full list of all modifications of records relative to the BGIF data 
is shown in Supplementary Data 1. All analyses are based on publically available 
data with clearly cited sources. Raw data and intermediate results are available from 
the corresponding author upon request.
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