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Concern over implications of climate change for

biodiversity has led to the use of bioclimatic models

to forecast the range shifts of species under future

climate-change scenarios. Recent studies have demon-

strated that projections by alternative models can be so

variable as to compromise their usefulness for guiding

policy decisions. Here, we advocate the use of multiple

models within an ensemble forecasting framework and

describe alternative approaches to the analysis of biocli-

matic ensembles, including bounding box, consensus

and probabilistic techniques. We argue that, although

improved accuracy can be delivered through the

traditional tasks of trying to build better models

with improved data, more robust forecasts can also

be achieved if ensemble forecasts are produced and

analysed appropriately.

Introduction

Attempts to predict climate change impacts on species

distributions have often relied on the bioclimatic ‘envelope’

modelling approach, whereby empirical relationships

between present-day distributions of species and climate

variables are used to estimate distributions of species

under future climate scenarios [1–4]. For several (usually)

pragmatic reasons, modelling typically involves selecting a

favoured technique from a range of alternatives, and then

justifying the choice by making reference to one or more

published studies. However, despite claims of superiority

for any given technique [5–10], independent evaluations

of models have often been unable to demonstrate the

pre-eminence of any single one [11–13].

Furthermore, studies have shown that projections by

alternative models can be so variable as to compromise

even the simplest assessment of whether species distribu-

tions should be expected to contract or expand for any given

climate scenario. For example, Pearson and colleagues [14]

applied nine well documented bioclimatic modelling tech-

niques to a standardised data set of four South African

plant species and compared consistency in range pre-

dictions under current and future climates. Predicted

distribution changes varied from a 92% loss to a 322%

gain for one species and an equally wide variability in

distribution change was predicted for the remaining

species. Similarly divergent forecasts have been the rule

in studies comparing alternative techniques to assess

potential climate change-induced shifts in the distribu-

tions of European plants [15], amphibians and reptiles

[16], and British breeding birds [17]. These results chal-

lenge the common practice of relying on one single method

to make forecasts of the responses of species to climate

change scenarios or, if one accepted a more sceptical view,

the usefulness of bioclimatic modelling in general for cli-

mate change impact studies.

Such variability in forecasts is not surprising given that

bioclimate ‘envelope’ models are correlative and therefore

sensitive to the data and the mathematical functions

utilized to describe the distributions of species in relation

to climate parameters. Process-basedmodels that simulate

bioclimate interactions from theoretical and experimental

knowledge provide an alternative that is less dependent on

empirical relationships; however, their implementation at

the species level is difficult because of the complex pro-

cesses and interactions that have to be represented; and

variability in forecasts is also common [18].

A solution to intermodel variations that has been used

in other fields is to utilize several models (herein termed

‘ensembles’) and use appropriate techniques to explore

the resulting range of projections. Here, we argue that

significant improvements on the robustness of a forecast

can be achieved if an ensemble approach is used and the

results analysed appropriately. We provide an overview

of ensemble forecasting, examine alternative techniques

for combining ensembles, and discuss their uses and

limitations for supporting policy decisions in biodiversity

conservation.

Ensemble forecasting

An ensemble, as introduced into statistical mechanics by

J. Willard Gibbs in 1878, is an idealization consisting of a

large (possibly infinite) number of copies of a system,

considered all at once, each of which represents a possible

state that the real system might be in at some specified

time. A forecast ensemble is more narrowly defined as

multiple simulations (copies) across more than one set of

initial conditions (IC), model classes (MC), parameters

(MP) and boundary conditions (BC) (Box 1). Each combina-

tion of IC, MC, MP and BC is one possible state of the

system being forecasted.

The idea of ensemble forecasting dates back to 1969,

when J.M. Bates and Nobel Prize winner in Economics

C.W.J. Granger published their influential article
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‘The combination of forecasts’ [19]. Providing that

individual forecasts contain some independent informa-

tion, the authors observed that combined forecasts would

yield lower mean error than any of the constituent indivi-

dual forecasts. The idea had been formally developed by

French mathematician P. Laplace in 1818 [20]: ‘In combin-

ing the results of these two methods, one can obtain a

result whose probability law of error will be more rapidly

decreasing’. However it was not until the pioneering work

of Bates and Granger that the idea of combining forecasts

became established. Since then, hundreds of studies have

been reviewed [21–23] and applied to a variety of fields of

research, including economics [24], management [25], sys-

tematics [26], biomedicine [27], meteorology [28] and cli-

matology [29]. Surprisingly, these ideas have been slow to

penetrate the ecological literature and it was only recently

that ensemble forecasting was explicitly attempted in

bioclimatic modelling of species distributions [14–17,30].

However, these early attempts have assessed only a few of

the possible combinations of MC, MP and BC in bioclimate

models (Box 2; Figure Ie).

Combining ensembles

Given an ensemble of model forecasts, how should they be

analysed? The traditional approach consists of identifying

the ‘best’ model from an ensemble of forecasts [12,13,31],

where the best model is often judged to be one in which

outputs match observed data as closely as possible. How-

ever, the ability to describe a given situation by calibration

of MPs does not always coincide with the ability to repre-

sent adequately new observations using the existing cali-

bration. This problem is particularly severe when

predicted observations have a degree of spatial or temporal

independence from the calibration set [32–34], which is the

case for models projecting distributions of species under

future climate scenarios [32].

Instead of picking the ‘best’ model from an ensemble, a

more promising approach is to explore the resulting range

of projections (Figure 1). For small ensemble sizes, two

contrasting approaches are to use the ensemble to define a

‘bounding box’, or to generate a ‘consensus’ forecast

(Figure 1b). The appropriate approach is partly dependent

on the question being asked, and the costs of being wrong.

For medium to large ensemble sizes, raw data can be used

generate probability distribution functions (PDFs) for the

forecast variable, but these will always be conditional on

the sampling strategy across IC, MC, MP and BC (Box 1).

The definition of a bounding box involves identification

of the range in forecasts from the ensemble members. The

approach is conservative in that it quantifies the range of

forecasts, but makes no statement about the probability

distribution or conditional probabilities of forecasts within

the bounding box [14,15]. It is acknowledged that the

ensemble members are a subset of all possible IC–MC–

MP–BC combinations and, therefore, only represent some

limited projection of reality. Any averaging of ensemble

member forecasts is considered to be unlikely to match

the truth, and modellers do not attempt to estimate

ensemble average or confidence limits for the average.

In consensus forecasting, no assumption is made over

the expected frequency distribution of the combined fore-

casts, but a measure of the central tendency (e.g. the mean

or median) is calculated for the ensemble of forecasts [17].

The rationale behind consensus forecasts is that, in aver-

aging several models, the ‘signal’ that one is interested in

emerges from the ‘noise’ associated with individual model

errors and uncertainties. When combining forecasts for

consensus, one can produce weighted and unweighted

averages. Committee averaging takes a simple unweighted

average of the predictions, essentially giving equal prob-

ability to each model. Examples include implementations

of artificial neural networks, where models are run several

times and the mean prediction used [14,15], or when

results of different modelling techniques are averaged

[16,17,35] (Box 2). With Bayesian approaches, weights

are proportional with the posterior probability of each

model, which depend on how well the model fits the data

and how many parameters are used [36]. Stacking is one

analogous procedure for estimating weights with least

square regressions [36], but the idea is more general

and can be used to obtain weights from measures of

accuracy with any modelling technique. The discussion

of whether to weight is a long one, but there is evidence

from other disciplines that unweighted methods can yield

cost-effective solutions [21], although this is only correct if

model predictions are equally robust [16,17]. In the simple

Box 1. Simulations for producing ensembles of forecasts

Ensembles of forecasts are produced by making multiple simula-

tions across more than one set of IC, MC, MP and BC.

Initial conditions

The state of the real system (e.g. the distribution of species or

factors that affect species) at the start of the simulation is often

poorly known; it represents an incomplete realization of the real

world. Small differences in IC will spawn different model trajectories

(so-called ‘chaos’) around the system attractor(s). Models can be run

with different ICs that are consistent with the available observations

to explore the sensitivity of the predictions to IC uncertainty.

Model classes

Different MCs (e.g. polynomials and smoothing splines of different

orders in general linear or additive models, nodes in classification

and regression trees, hidden layers in neural nets, and various

forms of process-based models) can all produce simulations that are

consistent with available observations, and can be considered as

competing and probably equally valid representations of the system

of interest.

Model parameters

Statistical models typically have parameters (such as a and b in the

linear regression model y = a + bx) that are estimated from the data.

In classical statistics, the uncertainty in these parameters can be

estimated. Multiple forecasts ‘sampling’ this parameter uncertainty

are then possible. For process-based models, many important

processes are parameterised, but the exact values of the parameters

are unknown. Multiple simulations using different parameter values

enable parameter uncertainty to be assessed.

Boundary conditions

Model forecasts are driven by an assumption about a change in BCs,

defined broadly as predictors in a statistical model (e.g. climate

variables). Typically, these BCs are uncertain, especially in the case

of future anthropogenic pollution emissions. Alternative future BCs

need to be explored, because the effect of differences between BCs

in model predictions of species range shifts can be as large as

differences between MCs.
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case of committee methods where the median forecast is

taken, the consensus will always be more accurate than at

least half of the individual forecasts [37]. This is true

independently of the distribution of individual forecasts,

or their position in relation to the phenomenon of interest

(the ‘truth’). If the truth falls within the range encom-

passed by all forecasts, less than half of the individual

forecasts will be superior to themedian forecast; at worst, if

the truth lies outside the forecast range, consensus will be

better than 50% of the forecasts.

Probabilistic forecasting can be considered the ‘end

game’ of ensemble forecasting (Figure 1d). We accept the

fact thatmodels are different from reality and that, inmost

cases, we have many possible candidate models that pass

some criteria about their ability to represent key aspects of

the real system that we are interested in. For a large

ensemble across multiple ICs, MPs, MCs and BCs, the

frequency distribution of forecasts approaches a prob-

ability distribution. New developments in climate model-

ling where many tens of thousands of simulations [38–40]

have produced initial results where frequency histograms

are starting to resemble PDFs [41]. However, even these

large ensembles are only sparsely sampling the possible

IC–MC–MP–BC combinations. Estimating a PDF from

Box 2. The production of ensembles of forecasts in practice

The simplest and most widely used approach for modelling species

distributions involves a single combination of IC, MC, MP and BC

to produce P [1] (Figure Ia). An approach using the concept of

ensemble forecasting utilizes n realisations of IC (either by boot-

strapping or k fold cross-validation) to select the model that either

best fits the data (e.g. bumping) or that produces a single forecast

by averaging all individual P (e.g. bagging) [35] (Figure Ib). A range

of alternative MC can also be fitted enabling the model that best

fits the data to be selected [31]; alternatively, a single forecast can

be produced by averaging all individual P [17] (Figure Ic). Technical

developments have recently enabled the production of alternative

MP for the same MC, enabling the production of single forecasts by

committee averaging (e.g. boosting and random forests) [13,35]

(Figure Id), although the same methods can be used to produce

several P with different parameterisations [14]. Recent attempts to

model species responses to climate change have used ensembles

that combine different MC and BC [14–16,30]. In Figure Ie, three

MC and three BC are combined to produce nine P, which can then

be synthesized using bounding box [14,15] or model averaging

[16].

The production of forecast ensembles requires software that

automates simulations across a range of IC, MC, MP and BC. The

implementation of ensemble forecasting for modelling species

distributions is still in its infancy, but there are several modelling

techniques that incorporate the notion of ensemble forecasting.

Typically, they sparsely sample all possible combinations of

IC, MC, MP and BC, yielding an incomplete representation of

the potential model uncertainties. In most cases, available

techniques simulate across IC and MP or IC and MC (Table I).

In the future, software platforms that automate simulations across

different techniques will enable comprehensive combinations of

IC � MC � MP � BC, yielding potentially large forecast ensembles

[38–40].

Figure I. Fitting models of species distributions and the production ensembles of

forecasts. The squares represent different steps in the production of ensembles

and circles represent the predictions from models.

Table I. Modelling techniques that incorporate the notion of ensemble forecasting

Approach Procedure Shown in Refs

Artificial neural

networks

Models are run several times and the mean prediction used Figure Id [12,14–17]

Alternatively, the best fitting model can be selected

Bagging trees Multiple boot-strapped regression trees are fitted without pruning and the mean prediction used Figure Ib,d [35]

Boosted additive

trees

The boosting algorithm iteratively calls the regression-tree algorithm to construct an

ensemble of trees

Figure Ib,d [13]

The regression trees are fitted sequentially on weighted versions of the data, where the

weights continuously adjust to take account of observations that are poorly fitted by the

preceding models

Predictions are finally combined using a majority vote criterion

GARP A genetic algorithm evolves a set of rules that best predicts the distribution of species based

on bootstrapped samples of available information

Figure Ib,c [2,13,14]

Rules developed are ranked by predictive performance, and applied to the environmental

conditions

Maximum entropy

(MAXENT)

Algorithm estimates the distribution of a species by finding the probability distribution of

maximum entropy (i.e. closest to uniform) subject to the constraint that the expected value

of each of a set of features (environmental variables or functions thereof) under this

estimated distribution closely matches its empirical average

Figure Ib,d [13,50]

The modelled probability is a ‘Gibbs’ distribution (i.e. exponential in a weighted sum of the

features)

The algorithm used to find the MAXENT distribution is similar to boosting

Random forests Similar to bagging trees but each tree is grown with a randomized subset of predictors Figure Ib,d [35]

Several trees are grown and the predictions aggregated by averaging
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the frequency distributions requires some form of

emulation of the forecast over unsampled combinations,

and the resulting PDFs remain conditional [42]. For

simpler systems, exhaustive sampling across uncertain-

ties is more feasible, enabling PDFs to be constructed. Yet

these will remain conditional on the model or family of

models being sampled, and a frequency distribution can

only be considered robust when inclusion of additional

MPs or MCs does not make much difference to the fore-

cast distribution of a particular event [43]. Whether we

can ever know that model stability has been achieved is a

moot point, and how to use probabilistic information from

large ensemble simulations remains an area of debate

[42,44,45].

Ensembles in practice

The idea of combining forecasts is particularly appealing

for those who are not convinced that a single model is

closest to the truth in all circumstances [11,12] and who

sympathise with the view that all models are flawed, but

provide useful information [46,47]. Yet ensemble forecast-

ing should not be viewed as an alternative to the more

traditional approach of trying to build better models with

improved data. Combined forecasts, although emphasizing

the ‘signal’ emerging from the noise associated with

different model outputs, remain dependent on individual

predictions; better individual forecasts will yield a better

combined forecast [17].

Whether to use a synthetically combined forecast (con-

sensus or probabilistic) or bounded forecasts depends in

part upon the way in which the forecast will be used. In

financial futures, for example, analysts take a long-term

view and are prepared for forecasts to be wrong [37]. In

seasonal climate forecasting, where users of information

might include small-scale farmers, agribusinesses and

commodity traders, the utility of consensus or probability

forecasts will vary according to the decision maker. Agri-

business and traders can cope with the financial costs of

Figure 1. Examples of alternative approaches to analysing ensemble forecasts using artificial data projected onto the map of Africa: (a) Individual results from five

hypothetical bioclimatic models (shown by coloured lines) predicting the area occupied by a key species under a climate change scenario (no combination of the ensemble

forecast is performed); (b) a bounding box showing the area where at least one (purple) or all models (green) predict species presence in the future, and a consensus

forecast (blue) showing the area where at least half the models (the median) forecast species presence; (c) a frequency histogram, showing the number of models (1–5)

forecasting the presence of the species at any point; and (d) a probability density function showing the likelihood of species presence estimated from a large ensemble.
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incorrect forecasts in a similar way to financial futures

traders. For small farmers, the costs of acting on an

incorrect forecast can be so severe that they might prefer

a more conservative forecast, or might even ignore

forecasts, adopting a cropping strategy that minimises

vulnerability to a poor season.

Unlike small-scale farmers, conservation planners need

to take a long-term view and rely on forecasts to support

conservation decisions [48]. The costs of beingwrong can be

high. For example, when planning for climate change, the

consequences of acting upon a forecast yielding false posi-

tives (e.g. species ranges predicted to expand in fact con-

tract) are that resources are not spent on the species most

in need of conservation action. Alternatively, acting on the

basis of false-negative information (e.g. species ranges

predicted to contract in fact expand) might lead to an

investment of resources in species that are not threatened

by climate change. In both cases, investments might be

directed away from the most vulnerable species, leading to

potential increases in their risks of extinctions.

The crucial issue is whether the benefits of using a set of

combined forecasts in decision-making outweigh, on aver-

age, the costs. In reserve selection, it has been shown that

acting upon ignorance and opportunism can be more

expensive than acting with the support of data and models

[49]. Recent analyses of species range shifts under climate

change have shown that the costs of relying on a single

forecast severely compromise their usefulness [14–16],

even when excluding the uncertainties arising from differ-

ent global climate models (GCM) projections (the BCs).

However, a recent study demonstrated the success of a

simple implementation of consensus forecasting (Box 2;

Figure Ie) in reducing both false negative and positive

errors in predictions of observed distribution shifts among

British breeding birds [17]. False negatives were reduced

from an average of 50% error to 0% (lower quartile = 31%

versus 0%; upper quartile = 69% versus 0%, respectively)

and comparable reductions in false positives were

obtained. Surely, running ensembles of models and com-

bining the results using consensus or probabilistic

approaches will not always remove the uncertainties,

but the likelihood of making conservation decisions based

on forecasts that are far from the truth is reduced.

Some writers have criticized the use of any single fore-

cast (combined from several models or single-model), as it

can lead to a decision that, although appropriate for the

forecast, imposes a rigidity that might have serious nega-

tive consequences if the forecast deviates significantly from

truth. The use of bounded forecasts offers an approach

that, although honest, might be challenging for decision

makers; it enables us to say, with some confidence, what

will not happen. The onus then lies with the decision

maker to develop policy that is as robust as possible to

the predictive uncertainty. A potentially useful pathway is

the development of hybrid approaches that combine bound-

ing box with consensus or probabilistic forecasting [16].

Conclusions and recommendations

Using ensemble forecasting has clear advantages over

single-model forecasts. Different approaches to the analy-

sis of the ensemble data have their own advantages and

disadvantages, and their suitability will depend on the

questions being asked. But if used appropriately, either

individually, in combination, or in hybrid form, these

approaches can enable more robust decision making in

the face of uncertainty, and have much to offer to conserva-

tion planning. There are additional reasons to adopt

ensemble forecasting as part of the mainstream practice

of species distribution modelling. Climatologists are now

producing tens of thousands of simulations of future cli-

mates [38–40]. Exploring these data will be necessary to

provide comprehensive assessments of the possible

impacts of climate change on biodiversity and the ensem-

bles framework will be required to enable such an explora-

tion. The most comprehensive attempts to run ensembles

of models of species distributions have spawn a limited

number of combinations of MCs and BCs (Box 2; Figure Ie),

yielding no more than 40 projections per species. Devel-

opments in bioclimate and climate modelling will rapidly

force this number to increase to several thousands projec-

tions per species. Considering that models need to be fitted

for several hundreds or thousands of species, it is clear

that we currently have no ability to cope with such large

problems.

Interactions with other disciplines, including statistics,

will help us to decide upon the most appropriate analytical

tools, but a serious limitation still includes the lack of

appropriate software to run and combine large ensembles

of models. This is essentially the same conclusion reached

by Robert T. Clemen in his 1989 review of ensemble

forecasting for management and business [21]. If progress

is to be made in the field of ensemble forecasting of species

distributions, ecologists need to move fast, join efforts and

abandon parochialism in software production. Open source

platforms, such as that provided by the R project for

statistical computing (http://www.r-project.org/), might

provide an adequate source of inspiration.
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