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Abstract The study of species co-occurrences has been
central in community ecology since the foundation of the
discipline. Co-occurrence data are, nevertheless, a neglected
source of information to model species distributions and
biogeographers are still debating about the impact of biotic
interactions on species distributions across geographical
scales. We argue that a theory of species co-occurrence in
ecological networks is needed to better inform interpretation
of co-occurrence data, to formulate hypotheses for differ-
ent community assembly mechanisms, and to extend the
analysis of species distributions currently focused on the
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relationship between occurrences and abiotic factors. The
main objective of this paper is to provide the first build-
ing blocks of a general theory for species co-occurrences.
We formalize the problem with definitions of the different
probabilities that are studied in the context of co-occurrence
analyses. We analyze three species interactions modules
and conduct multi-species simulations in order to document
five principles influencing the associations between species
within an ecological network: (i) direct interactions impact
pairwise co-occurrence, (ii) indirect interactions impact
pairwise co-occurrence, (iii) pairwise co-occurrence rarely
are symmetric, (iv) the strength of an association decreases
with the length of the shortest path between two species, and
(v) the strength of an association decreases with the num-
ber of interactions a species is experiencing. Our analyses
reveal the difficulty of the interpretation of species inter-
actions from co-occurrence data. We discuss whether the
inference of the structure of interaction networks is feasible
from co-occurrence data. We also argue that species distri-
butions models could benefit from incorporating conditional
probabilities of interactions within the models as an attempt
to take into account the contribution of biotic interactions to
shaping individual distributions of species.

Keywords Co-occurrence · Ecological networks ·
Biogeography · Indirect interactions · Null models

Introduction

Understanding of the processes driving the assembly of
communities has been a central theme of ecology since
the foundation of the discipline. How do we start from a
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regional species pool to assemble a structured community?
Why are some species associated with each other? The work
of Diamond (1975) pioneered the analysis of species co-
occurrence in geographical space and, together with the
controversy triggered by Connor and Simberloff (1979), it
stimulated the development of a new field of research in
numerical ecology (Stone and Roberts 1990; Gotelli and
Graves 1996; Legendre and Legendre 2012). The founda-
tional work on species co-occurrences also led to the devel-
opment of a rich array of methodological tools designed to
test null hypotheses in ecology. Even if null models could
be achieved numerically (e.g., Aráujo et al. 2011), typically
they are based on permutations of distribution data. Null
models have been used to infer the role of biotic interactions
between pairs of species on their individual distributions.
Studying the different drivers of species co-occurrence is
not only of theoretical interest for improving understanding
of the mechanisms of community assembly. It is also instru-
mental in predictive ecology, because a considerable amount
of information is contained in species distributions data.

Despite its historical importance for community ecology,
co-occurrence data remain a neglected source of informa-
tion in models of species distributions. Biogeographers are
still debating the impact of biotic interactions on species
distributions (Guisan and Thuiller 2005; Gotelli et al. 2010;
Kissling et al. 2012; Pellissier et al. 2013). The distribu-
tion of a species is thought to be first influenced by its
physiological tolerance to environmental conditions, but
also by interactions with other species (Hutchinson 1957;
MacArthur 1972; Peterson 2011; Boulangeat et al. 2012).
The question of whether such interactions leave imprints
in the distributions of individual species at biogeographical
scales is still open to debate (e.g., Davis et al. 1998), but
recent empirical (Gotelli et al. 2010), modeling (e.g., Aráujo
and Luoto 2007), and theoretical (Aráujo et al. 2011; Jabot
and Bascompte 2012) evidence invites the interpretation
that this might indeed be the case.

The overwhelming majority of species distributions mod-
eling applications, nonetheless, neglect information con-
tained in joint distributions. Even multivariate analysis of
community data (e.g., redundancy analysis—Legendre and
Legendre 2012) do not use co-occurrence in geographical
space to condition individual species response to environ-
mental variation. There has been a recent rise of inter-
est, however, in joint species distribution modeling (Clark
et al. 2014; Harris 2015; Pollock et al. 2014). These meth-
ods estimate the distribution of all species from a pool
simultaneously and allow to condition the presence of a
species on all other ones. However, estimated relationships
are inferred from co-occurrence in environmental space
rather than geographical space. That is, joint responses

to the environment are inferred rather than biotic interac-
tions themselves (Baselga and Aráujo 2009). JSDMs are,
nonetheless, a first step towards developing a next gener-
ation of models accounting for the impact of biotic inter-
actions on the distributions of species. They are, however,
purely empirically driven and carry no specific hypotheses
about how interactions can affect distributions. An excep-
tion is the recent attempt to model the effects of predator-
prey dynamics on distributions and abundances using a
metacommunity framework coupled with phenomenologi-
cal species distributions models (Fordham et al. 2013). The
problem with such approaches is that data to parameterize
interactions mechanistically are generally lacking (Morales-
Castilla et al. 2015); therefore, they are hardly applied in
most circumstances. It follows that we are faced with at least
two major problems: (i) understanding of the ecological
interactions underlying the distributions of species is lim-
ited, and (ii) knowledge of interactions is typically limited to
net interactions, mixing both direct and indirect interactions.
A theory of species co-occurrences in ecological networks
is, therefore, needed to help interpret co-occurrence data,
to formulate hypotheses for different community assembly
mechanisms, and to extend the analysis of species dis-
tributions currently focused on the relationship between
occurrences and abiotic factors.

The analysis of species co-occurrences starts with a
matrix representing the presence and absence of each
species over a set of sites. There are two aspects to the
quantitative study of co-occurrence. The first is the choice
of the metric used to quantify the strength of associations
(relationships between species occurrences) between pairs
of species. The simplest measure of species co-occurrence
is the number of species combinations, as defined by Pielou
and Pielou (1968). A second index is the count of checker-
boards Diamond (1975): “In such a pattern, two or more
ecologically similar species have mutually exclusive but
interdigitating distributions in an archipelago, each island
supporting only one species” (p. 32). Another popular index
of co-occurrence is the C-score (Stone and Roberts 1990).
This index is similar to the count of checkerboards; it mea-
sures the average association or repulsion between pairs of
species.

The second aspect of the analysis of species co-
occurrence is the formulation of a null model. The contro-
versy generated in Connor and Simberloff (1979) was partly
(and rightly) based on the absence of a valid null hypothe-
sis in Diamond’s analysis. Subsequent debates were mostly
concerned with the formulation of the null hypothesis (e.g.,
Diamond and Gilpin 1982). Thanks to the theoretical work
of Gotelli and Graves (1996), there is now a clear under-
standing of the different null models that can be constructed
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from the community matrix. New indices are constantly pro-
posed, such as in Boulangeat et al. (2012) and Veech (2013);
see also Table 2 in Ulrich and Gotelli (2013) for a descrip-
tion of 15 indices for co-occurrence analysis. A promising
avenue is the one proposed by Aráujo et al. (2011) for
the study of the matrix of species co-occurrence with tools
borrowed from network theory.

Surprisingly, there is currently no theory for co-
occurrence in multi-species communities. The basic
hypotheses are that pairwise negative interactions result
in repulsion, while pairwise positive interactions result
in attraction. Attraction and repulsion are assessed by a
comparison of the number of co-occurrence events to the
number expected under a totally independent distribution.
Similar environmental requirements between species could
also result in attraction, even in the absence of interac-
tions, if the sampling is conducted across heterogeneous
environmental conditions. This theory is limited to pairwise
and symmetric interactions; there is nothing for antagonistic
and indirect interactions. Food web ecologists were among
the first to recognize the important effect of indirect inter-
actions on abundance (Wootton 1994). For instance, plant
and carnivore abundances are expected to correlate across a
productivity gradient (Hairston et al. 1960; Oksanen et al.
1981) because of top-down control on the herbivore popula-
tion. Similarly, the propagation of indirect interactions has
been studied in more complex interaction networks (Yodzis
1988). Indirect interactions could reverse the net interac-
tion in a surprising way, such that predator-prey abundances
could be positively related (Montoya et al. 2009). Empiri-
cal analysis of co-occurrence for several taxa has shown that
they are usually asymmetric (Aráujo et al. 2011), such that
a species distribution tended to be nested within the distri-
bution of other (e.g., predator-prey distributions; Holt and
Barfield 2009; Gravel et al. 2011). In such a case, even if
the co-distribution signature is quite understood, available
methods will likely fail at using this piece of information to
improve forecasts.

The main objective of this paper is to provide the
first building blocks of a general theory of species co-
occurrences. We formalize the proposed theory with defini-
tions of different quantities that are studied in the context of
co-occurrence analyses. Herewith, we analyze three species
interactions modules in order to document five principles
influencing the association between pairs of species from an
ecological network: (i) direct interactions impact pairwise
co-occurrence; (ii) indirect interactions impact pairwise co-
occurrence; (iii) pairwise co-occurrence does not have to
be symmetric; (iv) the strength of an association decreases
with the length of the shortest path between two species;
and (v) strength of an association decreases with the num-

ber of interactions a species is experiencing. We base our
mathematical argument on a general model of species dis-
tributions that is free of any assumption about how the
ecological interactions operate. Finally, we extend our anal-
ysis with simulations of multi-species networks in order
to analyze how these mechanisms scale up in species-rich
communities.

Definitions

We start with definitions to formalize the quantities that can
be computed from species distribution data and be used in
the context of co-occurrence analyses. Let Xi be the random
variable representing the presence of species i. Xi = 1 when
species i is present, Xi = 0 otherwise. Then Xi,t>0 is the
random process associated, giving the value that Xi,t takes
at any time t . Let pi,t standing for the probability P(Xi,t =
1). Also, to illustrate the definitions, we derive the quantities
for a simple presence/absence dataset (see Table 1).

The marginal occurrence probability P(Xi,∞ = 1) =
p∗

i represents the occurrence probability of species i when
the system is at equilibrium, in the sense of the classical the-
ory of island Biogeography MacArthur and Wilson (1967).
As we assume so for all species, we drop the ∗ and the ∞
for the sake of clarity. The marginal occurrence probability
is the sum of the occurrence of the species across all possi-
ble set of species in the data. In other words, it corresponds
to the sum of the column of the site × species table, divided
by the total number of sites N . Marginal occurrence proba-
bilities for species in Table 1 are p1 = 0.6, p2 = 0.6, and
p3 = 0.4.

The observed co-occurrence between species i and j is
the joint probability pi,j = P(Xi = 1 ∩ Xj = 1). It rep-
resents the number of sites where the two species are found
together, across all possible set of species in the data (in
other words, it is a marginal probability with respect to other
species), divided by N . In our dataset, for instance, we have
p1,2 = 0.3 and p1,3 = 0.2.

The conditional co-occurrence between species i and j

is pi|j = P(Xi = 1|Xj = 1). It represents the probabil-
ity of observing species i, knowing that species j is already
present. This quantity is close to the measure of associa-
tion between two species because it is independent of the
marginal occurrence probability of both species. The prob-
lem is that, as soon as there are other species present, the
conditional co-occurrence as expressed here is marginalized
over the set of all other species from the community K .
For instance, for three species, we have p1|2 = P(X1 =
1|X2 = 1, X3 = 1) + P(X1 = 1|X2 = 1, X3 = 0).
It, therefore, includes both the effect of direct andindirect
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Table 1 Presence/absence dataset for three species and 10 sites

Sites Species 1 Species 2 Species3

1 0 1 1

2 0 1 1

3 1 1 0

4 1 0 1

5 0 0 0

6 1 1 1

7 0 1 0

8 1 0 0

9 1 0 0

10 1 1 0

associations between species, e.g., the direct association of
species 1 with species 2 or the indirect association of species
3 with 1 via its effect on 2. Consequently, the measure of
pairwise association should be pi|j,K = P(Xi = 1|Xj =
1, XK = 0), where the horizontal bar over K denotes
absence of all other species. We name this the fundamental
conditional co-occurrence. For instance, in Table 1, we get
p1|2 = p1,2

p2
= 0.5 and p1|2,3 = p1,2,3

p2,3
= 0.2

0.3 = 0.67.

Following the same logic, we define the fundamental
occurrence as pi|K = P(Xi = 1|XK = 0). The fundamen-
tal occurrence is conceptually equivalent to the fundamental
niche of Hutchinson (1957) and represents the probability
of observing a species in the absence of biotic interac-
tions, i.e., when all other species are absent. By analogy, the
marginal occurrence should be interpreted as the realized
distribution. For species 1 in Table 1, we calculate p1|23 =
p1,2,3
p2,3

= 0.2
0.3 = 0.67. Finally, we define the independent

co-occurrence as pi,j ;IND = P(Xi = 1)P(Xj = 1). It
represents the co-occurrence between any pairs of species
expected in the absence of any association between them.
In ecological terms, it would represent the co-occurrence
when ecological interactions and habitat filtering do not
impact species distribution. It also represents the null model
to which observed co-occurrence is usually compared. Note
that the independent co-occurrence is different from the
one expected under a neutral model (Hubbell 2001). Firstly
because strong competitive interactions in the neutral model
forces repulsion and, secondly, because dispersal limitation
also causes spatial aggregation and thus a non-random dis-
tribution of co-occurrence (Bell 2005). In our example, we
obtain, for instance, p1,2;IND = 0.36 and p2,3;IND = 0.24.

Direct association between two species

We start with the analysis of a two species situation,
labeled species 1 and species 2, in order to understand

direct associations between species pairs. A third species,
3, will be introduced in the next section to study indi-
rect associations. The model we develop is general, as we
do not specify the type of ecological interactions involved.
It therefore accounts for all possible mechanisms from
which an association between a pair of species could arise,
such as trophic interactions involving energy fluxes, non-
consumptive interactions, parasitism, direct interference,
territoriality, space pre-emption, niche construction, etc.
The impact of predator-prey interactions in a metapopula-
tion setting with colonization and extinction dynamics will
be considered for the multi-species simulations.

As we are willing to understand the role played by inter-
actions in co-occurrence, we start by defining marginal
co-occurrence probabilities of our two species by a decom-
position into conditional co-occurrences. By the formula of
total probability and Bayes’s theorem, we have:

p1 = P(X1 = 1 ∩ X2 = 1) + P(X1 = 1 ∩ X2 = 0)

= P(X1 = 1|X2 = 1)P(X2 = 1)

+P(X1 = 1|X2 = 0)P(X2 = 0) (1)

We do the same for species 2. Using the notation
described above, Eq. 1 could be rewritten as:

{
p1 = p1|2p2 + p1|2(1 − p2)

p2 = p2|1p1 + p2|1(1 − p1)
(2)

where the vertical bar denotes the absence of a species. By
solving the latter system, we get:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1 = p1|2 + p2|1(p1|2 − p1|2)
1 − (p2|1 − p2|1)(p1|2 − p1|2)

p2 = p2|1 + p1|2(p2|1 − p2|1)
1 − (p2|1 − p2|1)(p1|2 − p1|2)

(3)

When species are independent, we have p1|2 = p1|2 =
p1 and p2|1 = p2|1 = p2, then we logically find Eq. 1
again. Then, we can deduce the following interpretation of
the impact of direct interactions on co-occurrence:

i. If species 1 cannot persist in absence of 2 (e.g., a
parasite requiring its host), then p1|2 → 0, therefore
p1 → p1|2p2

ii. If species 1 depends strongly on 2 thereby perfectly
tracking its distribution 2, the p1|2 → 0 and p1|2 → 1,
and therefore p1 → p2

iii. If species 2 excludes 1, then p1|2 → 0 and p1|2 →
p1 together with p2|1 → 0 and p2|1 → p2. Hence,

for strong exclusion, we get p1 = p1−p2p1
1−p2p1

and p2 =
p2−p2p1
1−p2p1

. Therefore, if p2 → 1, then p1 → 0.
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Co-occurrence in three-species modules

Now, we consider the co-occurrence between three species.
We start with a general derivation of co-occurrence and then
interpret the results for particular modules in order to reveal
fundamental principles underling co-occurrence in ecolog-
ical networks. Our solution provides insights to decipher
the solution of species-rich networks since the three-node
connected subgraphs are fundamental building blocks of
larger networks (Milo et al. 2002; Stouffer et al. 2007;
Stouffer and Bascompte 2010). We use the same approach
as in Eq. 1 and get the subsequent equation:

p1 = P(X1 = 1 ∩ X2 = 1 ∩ X3 = 1)

+P(X1 = 1 ∩ X2 = 0 ∩ X3 = 1)

+P(X1 = 1 ∩ X2 = 1 ∩ X3 = 0)

+P(X1 = 1 ∩ X2 = 0 ∩ X3 = 0) (4)

As {X3 = 1, X3 = 0} forms a partition, irrespective of
the value for X2, we get:

p1 = P(X1 = 1|X3 = 1)p3 + P(X1 = 1|X3 = 0)(1 − p3)

(5)

This equation is analogous to the two-species interac-
tions equation but enables the study of networks involving
three species interactions, with species 2 being hidden by
marginalization. We split the three species problem in two
distinct two-interactions species problems. Firstly, we solve
the equation for sites without species 3 and get:

p1|3 = P(X1 = 1|X3 = 0)

= p1|23 + p2|13(p1|23 − p1|23)

1 − (p2|13 − p2|13)(p1|23 − p1|23)
(6)

which is similar to Eq. 3 but with an explicit absence of
species 3. We do similarly for the conditional occurrence of
1 on species 3 present:

p1|3 = P(X1 = 1|X3 = 1)

= p1|23 + p2|13(p1|23 − p1|23)

1 − (p2|13 − p2|13)(p1|23 − p1|23)
(7)

Doing so, we get the following set of equations describ-
ing the marginal occurrence probabilities for the three
species:⎧⎪⎨
⎪⎩

p1 = p1|3p3 + p1|3(1 − p3)

p2 = p2|3p3 + p2|3(1 − p3)

p3 = p3|2p2 + p3|2(1 − p2)

(8)

Note that we could have chosen a different set of equa-
tions depending on the way we split the problem, for
instance, we could have started by considering the occur-
rence of species 1 given the occurrence of species 2 instead

of species 3. Now, we solve the above linear system of three
equations with three unknowns and find that:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p1 = p1|3 + p3|2(p1|3 − p1|3) + (p3|2 − p3|2)(p1|3p2|3 − p1|3p2|3)
1 − (p2|3 − p2|3)(p3|2 − p3|2)

p2 = p2|3 + p3|2(p2|3 − p3|2)
1 − (p2|3 − p2|3)(p3|2 − p3|2)

p3 = p3|2 + p2|3(p3|2 − p3|2)
1 − (p2|3 − p2|3)(p3|2 − p3|2)

(9)

Conditional probabilities of the right-hand sides can all
be derived as we did for p1|3 in Eq. 7.

Community modules

We now interpret these equations with examples of well-
studied food web modules in community ecology: (1) linear
food chain, (2) exploitative competition, and (3) apparent
competition. To do so, we consider matrices of direct asso-
ciations representing the conditional co-occurrence proba-
bilities among all pairs of species (see Table 2).

We are interested by the observed co-occurrence because
this is the quantity that is easily measurable from species
distributions data, thus being the one that is typically stud-
ied. We consider that the marginal occurrence is also a
known quantity and, therefore, we examine the effect of par-
ticular conditional co-occurrence arrangements on observed
co-occurrences. We will not provide derivations for each
module, but focus on particular pairs to illustrate two of the
five principles.

Indirect interactions The comparison between the
observed co-occurrence and the conditional co-occurrence
reveals the role of indirect interactions on species asso-
ciations. Based on Eqs. 9 and 6, we get the association
between species i and k:

pi,k = pi − pi,k(1 − pk)

pi,k = pi − pi|jk + pj |ik(pi|jk − pi|jk)

1 − (pj |ik − pj |ik)(pi|jk − pi|jk)
(1 − pk)

(10)

Therefore, the observed co-occurrence between species i
and k depends on their respective interaction with species
j (pj |ik, pj |ik and pj |ik). The conditional co-occurrence
between two species could be null, but their observed co-
occurrence be non-independent because of a shared interac-
tion. This principle is best illustrated by the co-occurrence
between a carnivore and a plant (species 3 and 1, respec-
tively) in a linear food chain. In this situation, according to
Table 2, we find that the observed co-occurrence between



Theor Ecol

Table 2 Direct associations between pairs of species for different
modules

General case Linear chain⎛
⎜⎝

p1|23 p1|23 p1|23

p2|13 p2|13 p2|13

p3|12 p3|12 p3|12

⎞
⎟⎠

⎛
⎜⎝

p1|23 p1|23 p1|23

p2|13 0 0

0 0 0

⎞
⎟⎠

Exploitative competition Apparent competition⎛
⎜⎝

p1|23 p1|23 p1|23

p2|13 0 0

p3|12 0 0

⎞
⎟⎠

⎛
⎜⎝

p1|23 p1|23 p1|23

p2|13 p2|13 p2|13

p3|12 p3|12 0

⎞
⎟⎠

Entries indicate the fundamental conditional probabilities of occurence
of species i given the presence of species j and the absence of species
k. Linear chain: 1 is the resource, 3 the top predator ; Exploitative
competition: 2 and 3 are the consumers; Apparent competition: 1 and
2 are the resources. When pi|jk = 0, it means that species i cannot
be found without k. When pi|jk=pi|jk then species j does not impact
species i survival. For apparent competition, if species 1 and 2 are
interchangeable for species 3 then : p3|12 = p3|12

the plant and the carnivore is:

p1,3 = p1 − p1|23

1 − p2|13(p1|23 − p1|23)
(1 − p3) (11)

It is clear from this equation that there is a significant
association between the carnivore and the plant, despite the
conditional co-occurrence of the two species being totally
independent. The indirect association gets stronger with the
strength of both conditional co-occurrence. Similar observa-
tions could be made by studying the observed co-occurrence
between consumers (species 2 and 3) in the exploitative
competition module:

p2,3 = p2 − p1|23p2|13

1 − (p1|23 − p1|23)p2|13
(1 − p3) (12)

And between resources in the apparent competition mod-
ule (species 1 and 2):

p1,2 = p1 − p1|23

1 − p3|12(p1|23 − p1|23)
(1 − p2) (13)

Associations do not have to be symmetrical Many stud-
ies of co-occurrence assume pairwise associations to be
symmetrical (but see Aráujo et al. 2011; Boulangeat et
al. 2012). The reason is simple, usually the observed co-
occurrence is compared to the independent co-occurrence.
These two metrics of association are perfectly symmetrical.
This information is providing us an inappropriate interpre-
tation of the effect of interactions on species distribution.
If we consider for instance the association between the two
consumers (species 2 and 3) competing for a single resource
(species 1), we have the observed co- occurrence at Eq. 12,
which is symmetrical by definition. The proportion of the
area occupied by species 2 where species 3 is also present

is not, however, equivalent to the proportion of the areas
occupied by species 3. Rephrasing the problem,we find that
using Eqs. 7 and 12, p2,3/p2 is not equal to p2,3/p3. One
species could have a stronger impact on the distribution of
the other one. Predator distribution for instance tends to
be nested within the distribution of the prey (Gravel et al.
2011), and consequently the predator has a high conditional
co-occurrence with the prey, and alternatively the prey has a
lower conditional co-occurrence with the predator.

Multi-species simulations

Now, we move to multi-species simulations of more com-
plex networks to reveal the last two principles of our theory.
To do so, we run simulations of the model of trophic
island biogeography developped by Gravel et al. (2011).
The model describes the occurrence of a S species regional
network. Species stochastically colonize islands with prob-
ability c and go extinct with probability e, as in the original
model of MacArthur and Wilson (1967). Interactions are
introduced with three additional assumptions: (i) a con-
sumer species could colonize an island only if it has at least
one prey present (for simplicity, we consider producers to be
resident permanently on the island); (ii) a consumer species
goes extinct if it loses its last prey species; and (iii) the pres-
ence of at least one predator species increases the extinction
probability by ed . The consequence of these assumptions is
a sequential build-up of the food web on the island, start-
ing with low trophic level species with a general diet. Small
and isolated islands promote selection in favor of the most
generalist species. The predictions converge to the classic
island biogeography theory for highly connected regional
food webs and large and connected islands (details in Gravel
et al. 2011).

As mentioned above, there is a strong dependence of the
predator occurrence on the presence of its preys. Alterna-
tively, when ed is sufficiently large, the preys will tend to
avoid locations with the predator present. We consequently
expect a strong signature of the network of interactions on
the co-occurrence matrix. We are, however, concerned that
indirect associations could emerge, as exemplified with the
analysis of three species modules above, and thereby mask
the signal of conditional co-occurrences.

We simulated complex networks from 5 to 100 species
using the niche model of food web structure (Williams and
Martinez 2000). The diversity of primary producers was
fixed at 2, and their niche position was drawn randomly
between 0 and 1 according to a uniform distribution. We
fixed connectance at C = 0.1 to get comparable and realis-
tic numbers of interactions for our simulations. Colonization
probability was set at c = 0.1, baseline extinction probabil-
ity at e = 0.2, and predator-dependent additional extinction
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probability at ed = 0.2. Simulations were run for 107 time
steps to evaluate the conditional occurrence probabilities,
and 100 replicated networks were simulated for each level
of species richness.

Distance decay of observed co-occurrence The distribu-
tion of observed co-occurrence is illustrated for pairs of
species separated by different path lengths at Fig. 1a. The
observed co-occurrence is presented as a function of the
expected co-occurrence under the hypothesis of indepen-
dent distributions. The strongest associations (given by the
distance between the observed and the independent co-
occurrence) are observed among pairs of species directly
interacting with each other. The variance of the distribu-
tion reduces from direct to first-order indirect interactions,
and from first-order to higher interactions. We conclude
that indirect non-independent co-occurrences are possible
in complex networks, but their magnitude decreases as the
number of links between two nodes decreases. This result
is similar to the observation of a distance decay of indirect
interactions in food webs (Berlow et al. 2009).

Strength of co-occurrence decreases with degree and
species richness We performed simulations with a gra-
dient of species richness and observed that the variance
of observed co-occurrence also decreases with the degree
of a species, i.e., the number of direct interactions a
species is experiencing (Fig. 1b). We illustrated the rela-
tionship between the degree of a species and the observed
co-occurrence for pairs of species with a direct associa-
tion (Fig. 1c). This phenomenon has the consequence that
the strength of observed co-occurrence reduces with species
richness. The niche model has a constant connectance
(Williams and Martinez 2000), which has for consequence
an increase of the degree with species richness. We find
that the strength of co-occurrence decreases with the degree.
This result is straightforward to interpret: the more diverse
are the interactions, the weaker the impact of each pair-
wise direct interaction on the species distribution. Again,
this result is similar to the observation of a scaling relation-
ship between pairwise interactions and food web diversity
(Berlow et al. 2009).

Discussion

We first develop a probabilistic species distribution model
constrained by biotic interactions using conditional prob-
abilities of co-occurrence. We then illustrate five general
principles underlying the impact of ecological interactions
on co-occurrence and that should be considered for the for-
mulation of a general theory of species co-occurrence. Two

of them have been widely noted before: (i) direct interac-
tions affect species distributions and generate deviations in
co-occurrences from that expected if distributions of species
were independent from each other; (ii) the effect of direct
associations is often asymmetric, as envisioned in trophic
metacommunity ecology (Holt and Barfield 2009). We also
illustrate principles that have been overlooked in most stud-
ies of co-occurrence (Aráujo et al. 2011); (iii) indirect
interactions generate deviate co-occurrence from expecta-
tion under independence assumption; (iv) the strength of
indirect associations decreases with the length of the short-
est path distance between species pairs in a network; while
(v) also decreasing with the number of interactions a species
is experiencing. We started with the analysis of three species
modules to document these principles and then showed their
applicability in multi-species networks. We find that the
above principles also apply in larger networks, but that the
strength of pairwise associations weakens as the number of
species increases.

Our results have considerable implications for interpre-
tation of co-occurrence data. Firstly, they demonstrate the
considerable variety of mechanisms causing pairwise asso-
ciations. Such variety of mechanisms makes interpretation
of aggregated indices of co-occurrence, such as the C-score,
very difficult (see also Aráujo and Luoto 2014). Previ-
ous studies already made the argument that positive and
negative interactions could balance each other (Boulangeat
et al. 2012) and consequently associations should be studied
on a pairwise basis (Veech 2013). At least, some mea-
sure of the variability of the associations is required, and
at best metrics such as network analyses (Aráujo et al.
2011) should be used to characterize their complex struc-
ture. But most importantly, our analyses reveal the difficulty
to infer species interactions from co-occurrence matri-
ces. Associations are not symmetric and, therefore, indices
that are capable of dealing with them are required. Null
model testing is not sufficient; significance is assessed from
the difference between observed co-occurrence and co-
occurrence expected under independent distributions and is,
consequently, symmetric. In addition, statistically signifi-
cant associations cannot be interpreted as evidence of direct
interactions. Our results also show that indirect interactions,
and not only second-order interactions, contribute to gener-
ate apparent non-independent co-occurrence. These indirect
associations could be of any kind and are impossible to
detect solely based on knowledge of direct interactions.

Null models of species associations should, thus, be used
only to reveal the structure of co-occurrence data. The lack
of an association between a pair of species is no unequiv-
ocal evidence of absence of direct interactions. It must be
interpreted as the absence of a net effect in the spatial
co-occurrence arising from pairwise interaction alone. For
instance, in the case species A is competing with species
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Fig. 1 Co-occurrence in multi-species networks. a The disparity
between observed co-occurrence (Pi,j ) and independent co-occurrence
(Pi,j ;IND) decreases with the path length between nodes (species). The
envelopes are drawn around the 5 and 95 % quantiles of all of the data,
from 100 replicated simulations for every species richness value (5
to 100 species). b The strength of co-occurrence (log(Pi,j /Pi,j ;IND))
decreases with the number of interactions of a species i (i.e., the degree

of a node). Points represent the mean for a particular degree of node
value (1 to 60). The solid line represents the overall trends and the
grey envelop reflects the variance associated. At least 3000 values were
used for each point. c The standard deviation of the strength of associ-
ation (sd(Pi,j /Pi,j ;IND)) and thus the variance decreases with species
richness. Taken together, (b) and (c) imply that species distributions
converge to independence with increasing species richness

B and species C, and B with C, it is possible that A and
C could be independently co-occurring if there is a strong
indirect positive interaction A-C arising from the A-B and
B-C direct interactions. Null model testing is consequently
subject to important type I (false interpretation of a sig-
nificant association) and type II errors (false interpretation
of an absence of association). The problem itself does not
come from the statistical method per se; the description of
co-occurrence in the data will be right provided that the
technique is adequate, but from the interpretation of the null
model analysis.

Should we, therefore, abandon joint species distributions
modeling (JSDM) and all of the information contained in
co-distribution data? While our results might lead to such
an interpretation, there is still some value in species co-
occurrence data that could be used in distribution models.
The appropriate use of JSDMs is to remove biases in the
evaluation of species-specific relationship with the environ-
ment. Accounting for joint distribution will contribute to
the evaluation of the conditional distribution of a species
when all other species are absent. In other words, they
should be used to improve the evaluation of the funda-
mental niche. The JSDMs will, however, fail to predict the
right occurrence probability of a species for communities
that have no analogue to the training dataset. JSDMs are
using only the net associations between pairs of species
and are not meant to recover the direct pairwise conditional
co-occurrences. For instance, a JSDM evaluated for a plant,
a herbivore, and a carnivore will provide the correct descrip-
tion of the joint distribution of all three species, but will be
of limited use to predict the distribution of the plant and
the herbivore if the carnivore disappears from the system.
Further developments are, consequently, required to solve

the issue and account for both direct and indirect interac-
tions. One possible solution would be to constrain JSDMs
with a prior expectation of the underlying structure of direct
interactions.

It is also valuable to ask whether the inference of
the structure of interaction networks is feasible from the
observation of co-occurrences (as they result from many
ecological processes). There is growing interest in infer-
ring ecological network structure from alternative sources
of information (Gravel et al. 2013; Morales-Castilla et al.
2015). This problem is challenging because of the mul-
tiple influences on co-occurrence. Our analysis of three
species modules with conditional probabilities revealed it
is feasible numerically, to obtain an estimate of all pair-
wise conditional probabilities when accounting for higher
order interactions. Known quantities are the marginal prob-
abilities and observed co-occurrence. The parameters to be
evaluated are all fundamental conditional probabilities, rep-
resenting the direct associations between pairs of species
(the pi|j,K ). This is a S × S problem to solve and thus
requires a significant amount of data. It might, however, be
solved with large datasets where the number of sites N is
much larger than S. There might also be methods to reduce
the dimension of the problem because usually only a small
fraction of potential interactions are met in a network (cor-
responding to the connectance C). While a net interaction
network (i.e., a network that takes direct and indirect inter-
actions into account) is likely to be fully connected (S × S

links), the direct interaction network has still only a frac-
tion C of these links realized. Bayesian approach with latent
variables could even further help reducing the dimension
of the problem (e.g., Rohr et al. 2010; Ovaskainen et al.
2010). In such methods, latent variables are evaluated for
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each species to represent the underlying structure of the eco-
logical network. It was found that between two and four
parameters per species would be required to successfully
represent more than 80 % of interactions in a predator-prey
network (Rohr et al. 2010). This approach could, therefore,
be used to represent the underlying structure of direct inter-
actions and to evaluate numerically the non-null conditional
probabilities. Note that these pairwise direct interactions
should be interpreted specifically with reference to spatial
dynamics because they would still represent phenomenolog-
ically the consequences of interactions, not the mechanisms
of interactions.

To apply our theory, we need occurrence data along with
information on ecological interactions. Although such data
require additional sampling efforts, they provide the ade-
quate material to test the five principles we develop above.
However, before doing so, we should expand the theory
of species co-occurrence (and of species distribution) to
include environmental constraints. Our approach assumed a
homogeneous environment, mainly for tractability of equa-
tions. We acknowledge that non-independent co-occurrence
could also arise because of shared environmental require-
ments. The addition of environmental constraints would
be easy to implement in our framework by simply mak-
ing the conditional probability in absence of interactions a
function of the environment. Every quantity we derive there-
after would be conditional on the environment. What would
be more challenging but, nonetheless, feasible numerically
would be to make the direct interaction itself a function
of the environment. There is now growing evidence that
ecological interactions are context dependent (Chamberlain
et al. 2014; Poisot et al. 2012). We view this integration
as the next step to the derivation of a theory-driven species
distribution model taking into account biotic interactions
(Thuiller et al. 2013).
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Baselga A, Aráujo MB (2009) Individualistic vs community mod-
elling of species distributions under climate change. Ecography
32(1):55–65

Bell G (2005) The co-distribution of species in relation to the neutral
theory of community ecology. Ecology 86(7):1757–1770

Berlow EL, Dunne JA, Martinez ND, Stark PB, Williams RJ, Brose U
(2009) Simple prediction of interaction strengths in complex food
webs. Proc Natl Acad Sci U S A 106(1):187–191

Boulangeat I, Gravel D, Thuiller W (2012) Accounting for disper-
sal and biotic interactions to disentangle the drivers of species
distributions and their abundances. Ecol Lett 15(6):584–593

Chamberlain SA, Bronstein JL, Rudgers JA (2014) How context
dependent are species interactions? Ecol Lett 17:881–890

Clark JS, Gelfand AE, Woodall CW, Zhu K (2014) More than the sum
of the parts: forest climate response from joint species distribu-
tion models. Ecol Appl: A publication of the Ecological Society
of America 24(5):990–999

Connor EF, Simberloff D (1979) The assembly of species communi-
ties: chance or competition? Ecology 60(6):1132

Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998)
Making mistakes when predicting shifts in species range in
response to global warming. Nature 391(6669):783–786

Diamond JM (1975) Assembly of species communities. In: Ecology
and evolution of communities, pp 342–444

Diamond JM, Gilpin ME (1982) Examination of the null model
of connor and simberloff for species co-occurrences on islands.
Oecologia 52(1):64–74

Fordham DA, Akakaya HR, Brook BW, Rodrı́guez A, Alves PC,
Civantos E, Triviño M, Watts MJ, Aráujo MB (2013) Adapted
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